Zhongguo Dang Dai Er Ke Za Zhi.
2018 Aug 25; 20(8): 608–612.
Language:
Chinese
|
English
极早产儿俯卧位机械通气对呼吸功能的影响
Effect of prone positioning on respiratory function in very preterm infants undergoing mechanical ventilation
钟 庆华
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
段 江
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
张 彩营
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
冯 艳丽
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
齐 志业
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
贺 湘英
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
梁 琨
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
昆明医科大学第一附属医院儿科NICU, 云南 昆明 650032,
Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
(%)Mpaw
(cm H
2
O)TcSO
2
(%)注:[MBP]有创动脉血压平均压;[VT]潮气量;[FiO
2
]吸入氧体积分数;[Mpaw]平均气道压;[TcSO
2
]经皮血氧饱和度。仰卧位组37140±949±731.9±2.05.9±0.427±410.5±1.391.1±1.8俯卧位组42143±950±732.6±2.65.8±0.328±410.0±1.491.2±1.8
t
值1.820.731.36-1.341.05-1.65-1.12
P
值0.0730.4650.1790.1900.3000.1000.913
2.2. 两组患儿的呼吸机参数和通气时长比较
以达到生命体征稳定、TcSO
2
90%~95%、PETCO
2
40~55 mm Hg为前提,俯卧位组FiO
2
、PIP,Mpaw、机械通气总时长低于仰卧位组,差异均有统计学意义(
P
< 0.05);两组的VT、PEEP差异均无统计学意义(
P
> 0.05)。见
。
4
两组患儿的呼吸机参数和通气时长比较 (
x
±
s
)
|
组别
|
例数
|
VT
(mL/kg)
|
PEEP
(cm H
2
O)
|
FiO
2
(%)
|
PIP
(cm H
2
O)
|
Mpaw
(cm H
2
O)
|
TcSO
2
(%)
|
PETCO
2
(mmHg)
|
通气时长(d)
|
|
注:[VT]潮气量;[FiO
2
]吸入氧体积分数;[Mpaw]平均气道压;[TcSO
2
]经皮血氧饱和度;[PETCO
2
]呼气末二氧化碳分压。
|
|
仰卧位组
|
37
|
5.5±0.4
|
5.2±0.5
|
28±3
|
19.4±1.3
|
8.6±0.8
|
91.4±1.5
|
50.4±3.0
|
9±5
|
|
俯卧位组
|
42
|
5.6±0.4
|
5.0±0.4
|
26±2
|
17.9±1.1
|
8.1±0.7
|
92.0±1.7
|
50.3±3.3
|
7±4
|
|
t
值
|
|
-0.67
|
-1.78
|
-2.82
|
-5.72
|
-2.88
|
1.18
|
-0.09
|
-2.06
|
|
P
值
|
|
0.245
|
0.081
|
0.006
|
< 0.001
|
0.005
|
0.074
|
0.931
|
0.043
|
2.3. 两组血气分析、氧合指数和生命体征比较
俯卧位组的P/F值高于SG组,而OI值、RR则较低,差异均有统计学意义(
P
< 0.05)。两组的PaO
2
、pH、BE、HR、MBP差异均无统计学意义(
P
> 0.05)。见
。
5
两组患儿机械通气期间血气分析、氧合指数和生命体征比较
|
组别
|
例数
|
PaO
2
(
x
±
s
, mm Hg)
|
BE
[
P
50
(
P
25
,
P
75
)]
|
pH
(
x
±
s
)
|
P/F
(
x
±
s
, mm Hg)
|
OI
(
x
±
s
)
|
HR
(
x
±
s
, 次/min)
|
RR
(
x
±
s
, 次/min)
|
MBP
(
x
±
s
, mm Hg)
|
|
注:[P/F]PO
2
/FiO
2
;[OI]氧合指数;[MBP]有创动脉血压平均压。
|
|
仰卧位组
|
37
|
56.1±3.6
|
-2.0(-4.0, -0.8)
|
7.41±0.04
|
205.0±23.3
|
4.2±0.7
|
134±7
|
56±5
|
32.7±1.7
|
|
俯卧位组
|
42
|
56.1±3.6
|
-2.0(-4.0, 0)
|
7.38±0.06
|
214.6±19.6
|
3.8±0.5
|
137±8
|
44±6
|
32.0±2.2
|
|
t
(
Z
)值
|
|
-0.02
|
(-0.69)
|
-1.85
|
1.98
|
-3.56
|
1.99
|
-9.27
|
-1.43
|
|
P
值
|
|
0.984
|
0.493
|
0.067
|
0.049
|
0.001
|
0.050
|
< 0.001
|
0.158
|
3. 讨论
有研究表明,成人患者俯卧位通气治疗的获益随着通气时间延长而增加
[
3
]
。也有学者对新生儿RDS和呼吸衰竭患者采用数小时的俯卧位通气,结果可改善呼吸功能
[
5
,
9
]
。本研究俯卧位机械通气方案一直延续至呼吸机撤离,更加客观。新生儿特别是早产儿胸廓骨性结构较少,软骨组织较多,胸廓支撑力较软,为避免单一俯卧位通气带来的胸廓受压变形,本研究采取仰卧位和俯卧位轮替正压通气方案,结果发现:俯卧位组和仰卧位组VT、TcSO
2
、PaO
2
和PETCO
2
水平的差异无统计学意义,但俯卧位组的FiO
2
、Mpaw、PIP和OI值较低,而P/F比值则较高,提示容量辅助/控制呼吸模式下,采取俯卧位与仰卧位交替,极早产呼吸衰竭患儿能以相同的潮气量和较低的肺内压力获得气体交换,而且氧合功能更好,呼吸力学更为优化。由于重力作用,跨肺压沿重力方向逐渐增加,当呼吸衰竭特别是并发ARDS时,仰卧体位下可观察到肺泡沿腹侧到背侧方向依次出现过度扩张区域、可复张区域以及萎陷(不张)区域
[
6
]
。基于成人的研究显示,俯卧位通气可减少机械通气时肺的过度膨胀区域并促进萎陷肺泡的复张
[
11
-
12
]
。动物实验证实俯卧位通气可以增加背侧肺段的功能残气量和改善肺组织的弹性,肺顺应性增加
[
13
]
。因而本研究患儿氧合功能的改善与胸腔内压力分布间歇轮替,减少了单一体位通气造成的局部肺泡过度萎陷/扩张,沿腹侧到背侧的跨肺压和肺泡张力分布均质化,肺泡分流减少和通气/血流比值提高有关
[
4
,
14
-
15
]
。仰卧位时心脏对背侧的肺组织有重力作用,而俯卧位时肺组织受压面积减少,也是促进肺内压力均质化和肺顺应性改善的重要因素
[
16
]
。但也有研究认为早产儿群体肺部直径较小,重力对通气中气体分布的影响很小,实施俯卧位通气并未带来临床益处
[
17
]
。
本研究还表明,俯卧位与仰卧位交替通气下患儿呼吸频率较慢。推断与患儿的呼吸交换功能得到更好的满足,因而患者的呼吸触发努力和呼吸做工减少有关。有研究证实在俯卧位通气下,早产儿的呼吸暂停频率和呼吸暂停持续时间均较仰卧位通气少
[
6
]
。还有学者研究认为在早产儿中实施俯卧位通气可以增加呼吸时胸腹运动的同步性,有助于改善患儿的通气功能
[
18
]
。这些因素也可能是患儿呼吸更为平稳的原因。俯卧位组较仰卧位组平均机械通气时间减少,提示俯卧位组患儿肺功能的改善更快。俯卧位机械通气获得的较低跨肺压和相对均一的肺泡张力可减轻正压机械通气导致的呼吸机相关性肺损伤(容量伤和萎陷伤),而较低的吸入氧体积分数有助于避免或减轻氧毒性肺损伤
[
19
-
20
]
,因而俯卧位通气符合保护性通气策略的要求,是俯卧位组患儿能够较早撤离呼吸机的主要原因。保证患儿氧合和气体交换满足机体需求的前提下尽早撤离机械正压通气,恢复生理性胸腔负压通气无疑是打断正压通气与呼吸机相关肺损伤和呼吸机相关性肺炎藕联的最有效方式。
有研究显示,俯卧位通气早产儿的潮气量较之仰卧位增加
[
9
,
18
]
,本研究中两组的差异无统计学意义,可能与采用的容量辅助/控制模式而非新生儿常用的压力辅助/控制模式有关。随着呼吸机硬件技术的革新和通气技术理念的改变,越来越多的新生儿医师优先选择容量为目标的通气模式
[
21
]
。
本研究患儿的血压、心率改变仅在转换为俯卧位通气的最初半小时,但随着俯卧时间延长,两组的血压和心率的差异无统计学意义,提示俯卧位通气不影响极早产儿的循环功能。气管插管阻塞或者移位甚至脱落是俯卧位体位转换和通气治疗需要重点关注的问题之一
[
22
]
。体位转换时通常需两名护士体位转换,一名护士负责监控生命体征变化,防止气管插管、血管通路,监护探头等移位或脱落。不稳定的骨折,腹部疾病特别是开放性损伤、血流动力学极不稳定者应避免俯卧位通气
[
23
]
。
综上所述,采取仰卧位、俯卧位轮替通气方式可降低机械通气极早产儿对吸入氧体积分数的需求和正压通气压力、改善氧合功能,从而更早地撤离机械通气。但早产的背景比较复杂,研究对象肺发育成熟度难以准确评估和同质化;而极早产儿的生命体征不稳定,呼吸机转运和保暖等技术尚不完善,俯卧位通气时难以对肺部进行CT等影像学的动态评估。目前对新生儿俯卧位通气时长和体位变化的频率尚无统一的标准和共识,未来可联合多家NICU行多中心、大样本研究,以获得更加客观的数据。
Funding Statement
云南省高层次卫生技术人才培养(学科带头人)基金资助项目(D-201609);云南省卫生科技计划项目(2016NS062)
References
2.
Jobe AH. Mechanisms of lung injury and bronchopulmonary dysplasia.
Am J Perinatol.
2016;
33
(11):1076–1078. doi: 10.1055/s-0036-1586107.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome.
N Engl J Med.
2013;
368
(23):2159–2168. doi: 10.1056/NEJMoa1214103.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Cornejo RA, Díaz JC, Tobar EA, et al. Effects of prone positioning on lung protection in patients with acute respiratory distress syndrome.
Am J Respir Crit Care Med.
2013;
188
(4):440–448. doi: 10.1164/rccm.201207-1279OC.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Gouna G, Rakza T, Kuissi E, et al. Positioning effects on lung function and breathing pattern in premature newborns.
J Pediatr.
2013;
162
(6):1133–1137. doi: 10.1016/j.jpeds.2012.11.036.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Brunherotti MA, Martinez EZ, Martinez FE. Effect of body position on preterm newborns receiving continuous positive airway pressure.
Acta Paediatr.
2014;
103
(3):e101–e105. doi: 10.1111/apa.12504.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Kotani T, Tanabe H, Yusa H, et al. Electrical impedance tomography-guided prone positioning in a patient with acute cor pulmonale associated with severe acute respiratory distress syndrome.
J Anesth.
2016;
30
(1):161–165. doi: 10.1007/s00540-015-2084-y.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Galiatsou E, Kostanti E, Svarna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury.
Am J Respir Crit Care Med.
2006;
174
(2):187–197. doi: 10.1164/rccm.200506-899OC.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
Santini A, Protti A, Langer T, et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment.
Intensive Care Med Exp.
2015;
3
(1):55–62.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
14.
Aguirre-Bermeo H, Turella M, Bitondo M, et al. Lung volumes and lung volume recruitment in ARDS:a comparison between supine and prone position.
Ann Intensive Care.
2018;
8
(1):25–34. doi: 10.1186/s13613-018-0371-0.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Gattinoni L, Pesenti A, Carlesso E. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure:impact and clinical fallout through the following 20 years.
Intensive Care Med.
2013;
39
(11):1909–1915. doi: 10.1007/s00134-013-3066-x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Mase K, Noguchi T, Tagami M, et al. Compression of the lungs by the heart in supine, side-lying, semi-prone positions.
J Phys Ther Sci.
2016;
28
(9):2470–2473. doi: 10.1589/jpts.28.2470.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Hough JL, Johnston L, Brauer S, et al. Effect of body position on ventilation distribution in ventilated preterm infants.
Pediatr Crit Care Med.
2013;
14
(2):171–177. doi: 10.1097/PCC.0b013e31826e708a.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Sureshbabu A, Syed M, Das P, et al. Inhibition of regulatory-associated protein of mechanistic target of rapamycin prevents hyperoxia-induced lung injury by enhancing autophagy and reducing apoptosis in neonatal mice.
Am J Respir Cell Mol Biol.
2016;
55
(5):722–735. doi: 10.1165/rcmb.2015-0349OC.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Dargaville PA, Tingay DG. Lung protective ventilation in extremely preterm infants.
J Paediatr Child Health.
2012;
48
(9):740–746. doi: 10.1111/jpc.2012.48.issue-9.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Peng WS, Zhu HW, Shi H, et al. Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants:a systematic review and meta-analysis.
Arch Dis Child Fetal Neonatal Ed.
2014;
99
(2):158–165. doi: 10.1136/archdischild-2013-304613.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Fineman LD, LaBrecque MA, Shih MC, et al. Prone positioning can be safely performed in critically ill infants and children.
Pediatr Crit Care Med.
2006;
7
(5):413–422. doi: 10.1097/01.PCC.0000235263.86365.B3.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Vasilios Koulouras, Georgios Papathanakos, Athanasios Papathanasiou, et al. Efficacy of prone position in acute respiratory distress syndrome patients:A pathophysiology-based review.
World J Crit Care Med.
2016;
5
(2):121–136. doi: 10.5492/wjccm.v5.i2.121.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]