异常检测算法应用与实践_CMU赵越
欢迎关注 @Python与数据挖掘 ,专注 Python、数据分析、数据挖掘、好玩工具!
作者:赵越,卡内基梅隆大学
内容概括
1.什么是异常检测?
2.异常检测有什么具体应用?
3.异常检测的工具概览?如何用10行Python代码进行异常检测?
4.异常检测算法概览与主流模型介绍
5.面对各种各样的模型,如何选择和调参?
6.未来的异常检测研究方向
7.异常检测相关的资源汇总(书籍、讲座、代码、数据等)
异常检测
什么是异常值、离群点(anomaly)?
异常一般指的是与标准值(或期待值)有偏离的样本,也就是说跟绝大部分数据“长的不一样”。
异常检测的一些特点:
1.异常不一定代表是“坏”的事情,但往往是“有价值”的事情,我们对异常的成因感兴趣
2.异常检测往往是在无监督的模式下完成的—历史数据中没有标签,我们不知道哪些数据是异常。因此无法用监督学习去检测。
异常检测的应用:
1.金融行业的反欺诈、信用卡诈骗检测:把欺诈或者金融风险当做异常
2.罕见病检测:把罕见病当做异常,比如检测早发的阿兹海默症
3.入侵检测:把网络流量中的入侵当做异常
4.机器故障检测:实时监测发现或预测机械故障
5.图结构、群体检测:比如检测疫情的爆发点等
异常检测的应用
IntelControlFlag :
“基于10亿条包含各种错误的未标记生产质量代码的机器学习培训,ControlFlag得以通过“异常检测”技术,对传统编程模式展开筛查。无论使用的是哪种编程语言,它都能够有效地识别代码中可能导致任何错误的潜在异常。”
AmazonAWSCloudWatch :
“今天,我们将通过一项新功能增强CloudWatch,它将帮助您更有效地使用CloudWatch警报。…我们的用户可以构建自定义的控制面板,设置警报并依靠CloudWatch来提醒自己影响其应用程序性能或可靠性的问题。”
Google :
“GoogleAnalytics(分析)会选择一段时期的历史数据来训练其预测模型。要检测每天的异常情况,训练期为90天。要检测每周的异常情况,训练期为32周。”
异常检测的挑战
1.大部分情况下是无监督学习,没有标签信息可以使用
2.数据是极端不平衡的(异常点仅占总体数据的一小部分),建模难度大
3.检测方法往往涉及到密度估计,需要进行大量的距离/相似度计算,运算开销大
4.在实际场景中往往需要实时检测,这比离线检测的技术难度更高
5.在实际场景中,我们常常需要同时处理很多案例,运算开销大
6.解释性比较差,我们很难给出异常检测的原因,尤其是在高维数据上。但业务方需要了解异常成因
7.在实际场景中,我们往往有一些检测的历史规则,如何与学习模型进行整合
异常检测工具
Python :
1.PyOD:超过30种算法,从经典模型到深度学习模型一应俱全,和sklearn的用法一致
2.Scikit-Learn:包含了4种常见的算法,简单易用
3.TODS:与PyOD类似,包含多种时间序列上的异常检测算法
Java :
1.ELKI:EnvironmentforDevelopingKDD-ApplicationsSupportedbyIndex-Structures
2.RapidMiner异常检测扩展
R :
1.outlierspackage
2.AnomalyDetection
用10行Python代实行异常检测:
异常检测算法
异常检测算法可以大致被分为 :
1.线性模型(LinearModel):PCA
2.基于相似度的度量的算法(Proximity-basedModel):kNN,LOF,HBOS
3.基于概率的算法(ProbabilisticModel):COPOD
4.集成检测算法(EnsembleModel):孤立森林(IsolationForest),XGBOD
5.神经网络算法(NeuralNetworks):自编码器(AutoEncoder)
评估方法 也不能简单用准确度(accuracy),因为数据的极端不平衡
1.ROC-AUC曲线
2.Precision@Rankk:topk的精准
3.AveragePrecision:平均精准度
主流模型介绍:
如何选择和合并模型
异常检测实践中的技巧
异常检测落地中的考量
1.不要尝试一步到位用机器学习模型来代替传统模型
2.在理想情况下,应该尝试合并机器学习模型和基于规则的模型
3.可以尝试用已有的规则模型去解释异常检测模型
异常检测研究方向
技术交流群
建了技术交流群!想要进 交流群、获取资料、岗位推荐 的同学,可以直接加微信号: dkl88191 。加的时候备注一下: 研究方向 +学校/公司+知乎 ,即可。然后就可以拉你进群了。
强烈推荐大家关注 Python与数据挖掘 知乎账号和 Python学习与数据挖掘 微信公众号,可以快速了解到最新优质文章。
文章推荐
太实用了!Schedule模块, Python 周期任务神器!
这4款数据自动化探索 Python 神器,解决99%的数据分析问题!
深度盘点:30个用于深度学习、自然语言处理和计算机视觉的顶级 Python
机器学习模型验证,这3个 Python 包可轻松解决95%的需求!
深度盘点:8000字详细介绍 Python 中的 7 种交叉验证方法
整理不易,有所收获,点个赞和爱心 ❤️, 更多精彩欢迎关注