DataFrame(dict, columns=dict.index, index=[dict.columnnum])
DataFrame(二维ndarray)
DataFrame(由数组、列表或元组组成的字典)
DataFrame(NumPy的结构化/记录数组)
DataFrame(由Series组成的字典)
DataFrame(由字典组成的字典)
DataFrame(字典或Series的列表)
DataFrame(由列表或元组组成的列表)
DataFrame(DataFrame)
DataFrame(NumPy的MaskedArray)
|
构建DataFrame
数据矩阵,还可以传入行标和列标
每个序列会变成DataFrame的一列。所有序列的长度必须相同
类似于“由数组组成的字典”
每个Series会成为一列。如果没有显式制定索引,则各Series的索引会被合并成结果的行索引
各内层字典会成为一列。键会被合并成结果的行索引。
各项将会成为DataFrame的一行。索引的并集会成为DataFrame的列标。
类似于二维ndarray
沿用DataFrame
类似于二维ndarray,但掩码结果会变成NA/缺失值
|
df.reindex([x,y,...], fill_value=NaN, limit)
df.reindex([x,y,...], method=NaN)
df.reindex([x,y,...], columns=[x,y,...],copy=True)
|
返回一个适应新索引的新对象,将缺失值填充为fill_value,最大填充量为limit
返回适应新索引的新对象,填充方式为method
同时对行和列进行重新索引,默认复制新对象。
|
df.sum(axis=0, skipna=True, level=NaN)
df.mean(axis=0, skipna=True, level=NaN)
df.median(axis=0, skipna=True, level=NaN)
df.mad(axis=0, skipna=True, level=NaN)
df.var(axis=0, skipna=True, level=NaN)
df.std(axis=0, skipna=True, level=NaN)
df.skew(axis=0, skipna=True, level=NaN)
df.kurt(axis=0, skipna=True, level=NaN)
df.cumsum(axis=0, skipna=True, level=NaN)
df.cummin(axis=0, skipna=True, level=NaN)
df.cummax(axis=0, skipna=True, level=NaN)
df.cumprod(axis=0, skipna=True, level=NaN)
df.diff(axis=0)
df.pct_change(axis=0)
|
返回一个含有求和小计的Series
返回一个含有平均值的Series
返回一个含有算术中位数的Series
返回一个根据平均值计算平均绝对离差的Series
返回一个方差的Series
返回一个标准差的Series
返回样本值的偏度(三阶距)
返回样本值的峰度(四阶距)
返回样本的累计和
返回样本的累计最大值
返回样本的累计最小值
返回样本的累计积
返回样本的一阶差分
返回样本的百分比数变化
|
df.add(df2, fill_value=NaN, axist=1)
df.sub(df2, fill_value=NaN, axist=1)
df.div(df2, fill_value=NaN, axist=1)
df.mul(df2, fill_value=NaN, axist=1)
|
元素级相加,对齐时找不到元素默认用fill_value
元素级相减,对齐时找不到元素默认用fill_value
元素级相除,对齐时找不到元素默认用fill_value
元素级相乘,对齐时找不到元素默认用fill_value
|