<1> _score 字段没有经过计算,因为它没有用作排序。
<2> date 字段被转为毫秒当作排序依据。
首先,在每个结果中增加了一个 sort 字段,它所包含的值是用来排序的。 在这个例子当中 date 字段在内部被转为毫秒,即长整型数字1411516800000等同于日期字符串 2014-09-24 00:00:00 UTC。
其次就是 _score 和 max_score 字段都为 null。计算 _score 是比较消耗性能的, 而且通常主要用作排序 -- 我们不是用相关性进行排序的时候,就不需要统计其相关性。 如果你想强制计算其相关性,可以设置track_scores为 true。
2.默认排序
作为缩写,你可以只指定要排序的字段名称:
6.“多值字段”排序
多值字段是指同一个字段在ES索引中可以有多个含义,即可使用多个分析器(analyser)进行分词与排序,也可以不添加分析器,保留原值。
被分析器(analyser)处理过的字符称为analyzed field,analyzed字符串字段同时也是多值字段,在这些字段上排序往往得不到你想要的值。 比如你分析一个字符 "fine old art",它最终会得到三个值。例如我们想要按照第一个词首字母排序, 如果第一个单词相同的话,再用第二个词的首字母排序,以此类推,可惜 ElasticSearch 在进行排序时 是得不到这些信息的。
为了使一个string字段可以进行排序,它必须只包含一个词:即完整的not_analyzed字符串。 当然我们需要对字段进行全文本搜索的时候还必须使用被 analyzed 标记的字段。
在 _source 下相同的字符串上排序两次会造成不必要的资源浪费。 而我们想要的是同一个字段中同时包含这两种索引方式,我们只需要改变索引(index)的mapping即可。 方法是在所有核心字段类型上,使用通用参数 fields对mapping进行修改。 比如,我们原有mapping如下: