1.
World Health Organization. Cardiovascular diseases (CVDs). [2017-05-17]. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2.
Moukadem A, Dieterlen A, Hueber N, et al A robust heart sounds segmentation module based on S-transform.
Biomed Signal Process Control.
2013;
8
(3):273–281. doi: 10.1016/j.bspc.2012.11.008.
[
CrossRef
]
[
Google Scholar
]
3.
Pedrosa J, Castro A, Vinhoza T T. Automatic heart sound segmentation and murmur detection in pediatric phonocardiograms//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2014: 2294-2297.
4.
Schmidt S E, Holst-Hansen C, Graff C, et al Segmentation of heart sound recordings by a duration-dependent hidden Markov model.
Physiol Meas.
2010;
31
(4):513–529. doi: 10.1088/0967-3334/31/4/004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Springer D B, Tarassenko L, Clifford G D Logistic Regression-HSMM-Based heart sound segmentation.
IEEE Trans Biomed Eng.
2016;
63
(4):822–832.
[
PubMed
]
[
Google Scholar
]
6.
Liu C, Springer D, Li Q, et al An open access database for the evaluation of heart sound algorithms.
Physiol Meas.
2016;
37
(12):2181–2213. doi: 10.1088/0967-3334/37/12/2181.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Messner E, Zohrer M, Pernkopf F Heart sound segmentation—an event detection approach using deep recurrent neural networks.
IEEE Trans Biomed Eng.
2018;
65
(9):1964–1974. doi: 10.1109/TBME.2018.2843258.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Renna F, Oliveira J, Coimbra M T Deep convolutional neural networks for heart sound segmentation.
IEEE J Biomed Health Inform.
2019;
23
(6):2435–2445. doi: 10.1109/JBHI.2019.2894222.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Potes C, Parvaneh S, Rahman A, et al. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds//2016 Computing in Cardiology Conference (CinC), IEEE, 2016: 621-624.
10.
Chen Jianfei, Dang Xin. Heart sound analysis based on extended features and related factors//2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2019: 2189-2194.
11.
Oztavli E, Aptoula E. Effect of early and late fusion on heart sound classification//Signal Processing and Communications Applications Conference, IEEE, 2018: 1-4.
12.
Zabihi M, Rad A B, Kiranyaz S, et al. Heart sound anomaly and quality detection using ensemble of neural networks without segmentation//2016 Computing in Cardiology Conference (CinC), IEEE, 2016: 613-616.
13.
Yadav A, Dutta M K, Travieso C M, et al. Automatic classification of normal and abnormal PCG recording heart sound recording using fourier transform//2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), IEEE, 2018: 1-9.
14.
Upretee P, Yüksel M E. Accurate classification of heart sounds for disease diagnosis by a single time-varying spectral feature: preliminary results//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). Kayseri, TURKEY: IEEE, 2019: 1-4.
15.
Li Jinghui, Ke Li, Du Qiang, et al Heart sound signal classification algorithm: a combination of wavelet scattering transform and twin support vector machine.
IEEE Access.
2019;
7
:179339–179348. doi: 10.1109/ACCESS.2019.2959081.
[
CrossRef
]
[
Google Scholar
]
16.
Hamidi M, Ghassemian H, Imani M Classification of heart sound signal using curve fitting and fractal dimension.
Biomed Signal Process Control.
2018;
39
:351–359. doi: 10.1016/j.bspc.2017.08.002.
[
CrossRef
]
[
Google Scholar
]
17.
Ren Zhao, Cummins N, Pandit V, et al. Learning image-based representations for heart sound classification// International Conference. 2018: 143-147.
18.
Li Fen, Liu Ming, Zhao Yuejin, et al Feature extraction and classification of heart sound using 1D convolutional neural networks.
EURASIP J Adv Signal Process.
2019;
2019
(1):59. doi: 10.1186/s13634-019-0651-3.
[
CrossRef
]
[
Google Scholar
]
19.
Krishnan P T, Balasubramanian P, Umapathy S Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network.
Phys Eng Sci Med.
2020;
43
(2):505–515. doi: 10.1007/s13246-020-00851-w.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Meintjes A, Lowe A, Legget M. Fundamental heart sound classification using the continuous wavelet transform and convolutional neural networks//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018: 409-412.
21.
Noman F, Ting C M, Salleh S H, et al. Short-segment heart sound classification using an ensemble of deep convolutional neural networks//ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019: 1318-1322.
22.
Singh S A, Majumder S, Mishra M. Classification of short unsegmented heart sound based on deep learning//2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, 2019: 1-6.
23.
Krizhevsky A, Sutskever I, Hinton G ImageNet classification with deep convolutional neural networks.
Communications of the ACM.
2017;
60
(6):84–90. doi: 10.1145/3065386.
[
CrossRef
]
[
Google Scholar
]
24.
Qian Kun, Ren Zhao, Dong Fengquan, et al. Deep wavelets for heart sound classification//2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), IEEE, 2019: 1-2.
25.
Chen Tianqi, Guestrin C. XGBoost: A Scalable Tree Boosting System// The International Conference on Knowledge Discovery and Data Mining. 2016. arXiv: 1603.02754.
26.
Shi H, Wang H, Huang Y, et al A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification.
Comput Methods Programs Biomed.
2019;
171
:1–10.
[
PubMed
]
[
Google Scholar
]
27.
Hochreiter S, Schmidhuber J Long short-term memory.
Neural Comput.
1997;
9
(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
Sainath T N, Vinyals O, Senior A, et al. Convolutional, long short-term memory, fully connected deep neural networks//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2015: 4580-4584.