一次http请求对应一个call对象,既是RealCall对象。
Transmitter
Transmitter是okhttp中应用层和网络层的桥梁
,管理同一个Cal的所有连接、请求、响应和IO流之间的关系,它在RealCall创建后就被创建了。
在Transmitter中okhttpclient和call我们都认识,剩下的RealConnectionPool、RealConnection、ExchangeFinder、Exchange都和okhttp的
连接机制
有关,都会在ConnectInterceptor中介绍,Transmitter就是负责管理它们之间的关系。
Exchange
Exchange负责从创建的连接的IO流中写入请求和读取响应,完成一次请求/响应的过程,在CallServerInterceptor中你会看到它真正的作用
ExchangeFinder
ExchangeFinder对象在RetryAndFollowUpInterceptor中通过Transmitter的prepareToConnect方法创建,
它的find方法是连接真正创建的地方.
ExchangeFinder就是
负责连接的创建,把创建好的连接放入连接池,如果连接池中已经有该连接,就直接取出复用
.
ExchangeFinder管理着两个重要的角色:RealConnection、RealConnectionPool。
RealConnection
连接的真正实现,实现了Connection接口,内部利用Socket建立连接
RealConnectionPool
连接池,用来管理连接对象RealConnection
RealConnectionPool 在内部维护了一个线程池,用来执行清理连接任务cleanupRunnable,还维护了一个双端队列connections,用来缓存已经创建的连接。
创建一次连接要经历TCP握手,如果是HTTPS还要经历TLS握手,握手的过程都是耗时的,所以为了提高效率,就需要connections来对连接进行缓存,从而可以复用;还有如果连接使用完毕,长时间不释放,也会造成资源的浪费,所以就需要cleanupRunnable定时清理无用的连接。
okhttp支持5个并发连接,默认每个连接keepAlive为5分钟,keepAlive就是连接空闲后,保持存活的时间。
2.常见的拦截链有
RetryAndFollowUpInterceptor
重试与重定向拦截器
主要做的事情:
1.创建ExchangeFinder,为在ConnectInterceptor中连接的建立做了一个准备。
2.实现重试和重定向功能,内部通过while(true)死循环来进行重试获取Response(有重试上限,超过20次会抛出异常)。
3.其中followUpRequest方法根据响应码来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建响应的Request进行下一次请求。如果没有触发重新请求就会直接返回Response。
BridgeInterceptor
桥接拦截器,用于完善请求头
主要做的事情:
1.发送请求前,BridgeInterceptor补全一些http header。
这主要包括Content-Type、Content-Length、Transfer-Encoding、Host、Connection、Accept-Encoding、User-Agent,还加载Cookie,随后创建新的Request,并交给后续的Interceptor处理,以获取响应。
2.收到响应后
保存Cookie
如果服务器返回的响应的content是以gzip压缩过的,则会先进行解压缩,移除响应中的header Content-Encoding和Content-Length,构造新的响应并返回;否则直接返回响应。
CacheInterceptor
缓存拦截器,处理HTTP缓存。
Cache这里的缓存都是基于Map,key是请求中url(debug的时候是:
http://localhost:8080/okhttp?msg=123
)的md5,value是在文件中查询到的缓存,页面置换基于LRU算法
主要做的事情:
1.根据Request中获取缓存的Response,然后根据用于设置的缓存策略来进一步判断缓存的Response是否可用以及是否发送网络请求
(CacheControl.FORCE_CACHE因为不会发送网络请求,所以networkRequest一定为空)。
2.如果从网络中读取,此时再次根据缓存策略来决定是否缓存响应。
OkHttp已经有实现Cache的整套策略,在Cache类,但默认情况下不会使用,需要自己在创建OkHttpClient时,手动创建并传给OkHttpClient.Builder。
cache使用方式
int cacheSize = 10 * 1024 * 1024; // 10 MiB
File cacheFile = new File("E:\\okhttpcache");
Cache cache = new Cache(cacheFile, cacheSize);
OkHttpClient.Builder builder = new OkHttpClient.Builder()
.connectTimeout(20, TimeUnit.SECONDS)
.writeTimeout(20, TimeUnit.SECONDS)
.readTimeout(20, TimeUnit.SECONDS)
.cache(cache);
ConnectInterceptor
连接拦截器,打开一个连接到远程服务器。
主要做的事情:
1.transmitter.newExchange方法创建Exchange
2.借助前面创建的ExchangeFinder,调用它的find方法,从连接池里面选出链接,如果没有则创建新连接。
3.打开一个连接到远程服务器
4.RealConnection.newCodec(),创建并返回Http1ExchangeCodec(http中所有流对象操作都封装到了Http1ExchangeCodec
实现类中
)
CallServerInterceptor
调用服务拦截器,处理IO,与服务器进行数据交换。是拦截链中的最后一个拦截器。
通过
Http1ExchangeCodec
依次次进行写请求头、请求体(可选)、读响应头、读响应体。
如果请求的header或服务器响应的header中,Connection值为close,CallServerInterceptor还会关闭连接。
3.拦截器使用方式
okhttp拦截器用法很简单,构建OkHttpClient时候通过.addInterceptor()就可以将拦截器加入。
OkHttpClient client = new OkHttpClient.Builder()
.addInterceptor(new LoggingInterceptor()) //注册应用拦截器
.addNetworkInterceptor(new LoggingInterceptor()) //注册网络拦截器
.build();
应用拦截器
1.不需要担心中间响应,如重定向和重试。
2.总是调用一次,即使从缓存提供HTTP响应。
3.遵守应用程序的原始意图。不注意OkHttp注入的头像If-None-Match。
4.允许短路和不通话Chain.proceed()。
5.允许重试并进行多次呼叫Chain.proceed()。
网络拦截器
1.能够对重定向和重试等中间响应进行操作。
2.不调用缓存的响应来短路网络。
3.观察数据,就像通过网络传输一样。
4.访问Connection该请求。
二、每个拦截器源码
入口在RealCall.getResponseWithInterceptorChain
1.RealCall.getResponseWithInterceptorChain
Response getResponseWithInterceptorChain() throws IOException {
//构建拦截器链,加入拦截器
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
//先加入用户自定义拦截器
interceptors.addAll(client.interceptors());
//再加入程序必备的拦截器
// 重试拦截器,网络错误、请求失败等
interceptors.add(new RetryAndFollowUpInterceptor(client));
// 桥接拦截器,主要是重构请求头即header
interceptors.add(new BridgeInterceptor(client.cookieJar()));
// 缓存拦截器
interceptors.add(new CacheInterceptor(client.internalCache()));
// 连接拦截器,连接服务器,https包装
interceptors.add(new ConnectInterceptor(client));
// 网络拦截器,websockt不支持,同样是自定义
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
// 服务拦截器,主要是发送(write、input)、读取(read、output)数据
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
originalRequest, this, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
boolean calledNoMoreExchanges = false;
// 开启调用链
try {
Response response = chain.proceed(originalRequest);
if (transmitter.isCanceled()) {
closeQuietly(response);
throw new IOException("Canceled");
return response;
} catch (IOException e) {
calledNoMoreExchanges = true;
throw transmitter.noMoreExchanges(e);
} finally {
if (!calledNoMoreExchanges) {
transmitter.noMoreExchanges(null);
做了几件事
1.构建拦截器链,加入拦截器。(内部采用责任链模式)
2.按顺序执行拦截器链上每个拦截器,并最终执行真正的http请求得到返回结果
2.RealInterceptorChain.proceed
@Override public Response proceed(Request request) throws IOException {
return proceed(request, transmitter, exchange);
public Response proceed(Request request, Transmitter transmitter, @Nullable Exchange exchange)
throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// If we already have a stream, confirm that the incoming request will use it.
if (this.exchange != null && !this.exchange.connection().supportsUrl(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
// If we already have a stream, confirm that this is the only call to chain.proceed().
if (this.exchange != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(interceptors, transmitter, exchange,
index + 1, request, call, connectTimeout, readTimeout, writeTimeout);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
if (exchange != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
// Confirm that the intercepted response isn't null.
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
if (response.body() == null) {
throw new IllegalStateException(
"interceptor " + interceptor + " returned a response with no body");
return response;
做了几件事
1.对状态及获取的reponse做检查
2.最主要的事情即是构造新的RealInterceptorChain对象,获取对应Interceptor,并调用Interceptor的intercept(next)了
在这里,index充当迭代器或指示器的角色,用于指出当前正在处理的Interceptor。
调用拦截链中第一个拦截器RetryAndFollowUpInterceptor
3.RetryAndFollowUpInterceptor
@Override public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Transmitter transmitter = realChain.transmitter();
int followUpCount = 0;
Response priorResponse = null;
//一个while(true)中进行下一个拦截器的调用(即使进行后面的Http请求),如果出现RouteException和IOException异常则重试
//有4中情况会停止重试:The application layer has forbidden retries、We can't send the request body again、This exception is fatal、No more routes to attempt
//如果发生以上4中情况之一则抛出异常,结束while循环,释放资源,该拦截器后面的方法不会再执行了,不会再重试了。往外抛异常
while (true) {
transmitter.prepareToConnect(request);
if (transmitter.isCanceled()) {
throw new IOException("Canceled");
Response response;
boolean success = false;
try {
//调用第二个拦截器BridgeInterceptor
response = realChain.proceed(request, transmitter, null);
success = true;
} catch (RouteException e) {
// The attempt to connect via a route failed. The request will not have been sent.
if (!recover(e.getLastConnectException(), transmitter, false, request)) {
throw e.getFirstConnectException();
continue;
} catch (IOException e) {
// An attempt to communicate with a server failed. The request may have been sent.
boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
//这个recover方法里面就是在判断是否继续重试,还是抛出异常结束这个拦截器
if (!recover(e, transmitter, requestSendStarted, request)) throw e;
continue;
} finally {
// The network call threw an exception. Release any resources.
if (!success) {
transmitter.exchangeDoneDueToException();
// Attach the prior response if it exists. Such responses never have a body.
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build();
Exchange exchange = Internal.instance.exchange(response);
Route route = exchange != null ? exchange.connection().route() : null;
//根据响应码来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建响应的Request进行下一次请求。
Request followUp = followUpRequest(response, route);
//如果没有触发重新请求就会直接返回Response。
if (followUp == null) {
if (exchange != null && exchange.isDuplex()) {
transmitter.timeoutEarlyExit();
return response;
RequestBody followUpBody = followUp.body();
if (followUpBody != null && followUpBody.isOneShot()) {
return response;
closeQuietly(response.body());
if (transmitter.hasExchange()) {
exchange.detachWithViolence();
//最大重试次数为20
if (++followUpCount > MAX_FOLLOW_UPS) {
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
request = followUp;
priorResponse = response;
做了几件事
重试与重定向拦截器
主要做的事情:
1.while(true),出错重试
2.transmitter.prepareToConnect(request)方法准备创建一个连接。 如果存在连接,则优先使用现有连接。
创建ExchangeFinder,为在ConnectInterceptor中连接的建立做了一个准备。
3.realChain.proceed方法
进行下一个拦截器的调用(即是进行后面的Http请求)
4.如果该次HTTP请求出现重大异常则结束重试,抛出异常,释放资源(transmitter.exchangeDoneDueToException();)
如果出现RouteException和IOException异常则重试调用recover方法判断再情况下是否还需要重试
有4中情况会停止重试:
The application layer has forbidden retries、这是判断okhttpclient的retryOnConnectionFailure属性值
We can't send the request body again、这是判断requestSendStarted属性值和异常是否为FileNotFoundException
This exception is fatal、这是判断异常是否为ProtocolException、SocketTimeoutException、CertificateException、SSLPeerUnverifiedException
No more routes to attempt、这是判断exchangeFinder.hasStreamFailure() && exchangeFinder.hasRouteToTry();
5.followUpRequest方法
根据响应码responseCode来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建请求的Request进行下一次请求。如果没有触发重新请求就会直接返回Response。
以下responseCode可能会导致重试:
HTTP_PROXY_AUTH = 407
HTTP_UNAUTHORIZED = 401
HTTP_PERM_REDIRECT = 308
HTTP_TEMP_REDIRECT = 307
HTTP_MULT_CHOICE = 300
HTTP_MOVED_PERM = 301
HTTP_MOVED_TEMP = 302
HTTP_SEE_OTHER = 303
HTTP_CLIENT_TIMEOUT = 408
HTTP_UNAVAILABLE = 503
6.closeQuietly(response.body())方法
7.最大重试次数MAX_FOLLOW_UPS为20
4.BridgeInterceptor
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
//在调用下一个拦截器之前:填充请求头
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
//调用第三个拦截器CacheInterceptor
Response networkResponse = chain.proceed(requestBuilder.build());
//解析返回的response中的cookie并保存
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
//将网络请求回来的响应Respond转化为用户可用的response(包括gzip解压)
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
return responseBuilder.build();
做了几件事:
1.在调用下一个拦截器之前:填充请求头
此处可能会填充的请求头有:Content-Type、Content-Length、Transfer-Encoding、Host、Connection、Accept-Encoding、Cookie、User-Agent
2.在下一个拦截器返回response后
HttpHeaders.receiveHeaders解析返回的response中的cookie并保存
将网络请求回来的响应Respond转化为用户可用的response(包括gzip解压)
5.CacheInterceptor
@Override public Response intercept(Chain chain) throws IOException {
//1.cache不为空从中获取cacheCandidate
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
//2.通过FacheStrategy.Factory获取到缓存策略,获取网络请求与响应缓存
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
//3.这个方法里面主要是增加缓存命中的计数
cache.trackResponse(strategy);
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
//4.没网和没缓存的请求下直接返回一个504错误响应
// If we're forbidden from using the network and the cache is insufficient, fail.
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
//5.没网的情况下直接通过响应缓存创建Response并返回
// If we don't need the network, we're done.
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
Response networkResponse = null;
try {
//6.调用第四个拦截器ConnectInterceptor
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
//7.有响应缓存(cacheResponse != null)并且响应码为304时(networkResponse.code() == HTTP_NOT_MODIFIED)--该响应码意思直接使用缓存。通过cacheResponse创建Response并返回。
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
//8.cache不为空,有请求头和缓存策略时,通过cache的put方法进行缓存。
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
return response;
做了几件事
1.cache不为空从中获取cacheCandidate
2.通过FacheStrategy.Factory获取到缓存策略,获取网络请求与响应缓存
3.调用cache的同步方法trackResponse,保证请求一致性。
这个方法里面主要是增加缓存命中的计数
4.没网和没缓存的请求下直接返回一个504错误响应
5.没网的情况下
直接通过响应缓存创建Response并返回
6.调用下一个拦截链
7.有响应缓存(cacheResponse != null)并且响应码为304时(networkResponse.code() == HTTP_NOT_MODIFIED)--该响应码意思直接使用缓存。通过cacheResponse创建Response并返回。
8.cache不为空,有请求头和缓存策略时,通过cache的put方法将http请求返回的response缓存。
6.ConnectInterceptor
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
Transmitter transmitter = realChain.transmitter();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks);
//调用第五个拦截器CallServerInterceptor
return realChain.proceed(request, transmitter, exchange);
做了几件事:
1.transmitter.newExchange方法创建Exchange
Exchange负责从创建的连接的IO流中写入请求和读取响应,完成一次请求/响应的过程,在CallServerInterceptor中你会看到它真正的作用
transmitter.newExchange
/** Returns a new exchange to carry a new request and response. */
Exchange newExchange(Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
synchronized (connectionPool) {
if (noMoreExchanges) {
throw new IllegalStateException("released");
if (exchange != null) {
throw new IllegalStateException("cannot make a new request because the previous response "
+ "is still open: please call response.close()");
ExchangeCodec codec = exchangeFinder.find(client, chain, doExtensiveHealthChecks);
Exchange result = new Exchange(this, call, eventListener, exchangeFinder, codec);
synchronized (connectionPool) {
this.exchange = result;
this.exchangeRequestDone = false;
this.exchangeResponseDone = false;
return result;
做了几件事:
1.通过exchangeFinder.find方法得到exchangeCodec
2.创建Exchange对象
exchangeFinder.find是创建连接的入口
ExchangeFinder对象早在RetryAndFollowUpInterceptor中通过Transmitter的prepareToConnect方法创建,它的find方法是连接真正创建的地方.
ExchangeFinder就是负责连接的创建,把创建好的连接放入连接池,如果连接池中已经有该连接,就直接取出复用.
ExchangeFinder管理着两个重要的角色:RealConnection、RealConnectionPool。
做了几件事
1.findHealthyConnection()从连接池ConnectionPool获得可用连接RealConnection,且打开了连接
2.resultConnection.newCodec(),创建并返回Http1ExchangeCodec(http中所有流对象操作都封装到了Http1ExchangeCodec实现类中
)
这个源码分析看本文后半部分
7.CallServerInterceptor
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Exchange exchange = realChain.exchange();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
//调用Http1ExchangeCodec的writeRequestHeaders方法写入请求的头部信息
exchange.writeRequestHeaders(request);
boolean responseHeadersStarted = false;
Response.Builder responseBuilder = null;
//如果不是HEAD不是GET方法,且有请求体,则写入请求体
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return
// what we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
exchange.flushRequest();
responseHeadersStarted = true;
exchange.responseHeadersStart();
responseBuilder = exchange.readResponseHeaders(true);
if (responseBuilder == null) {
if (request.body().isDuplex()) {
// Prepare a duplex body so that the application can send a request body later.
exchange.flushRequest();
BufferedSink bufferedRequestBody = Okio.buffer(
exchange.createRequestBody(request, true));
request.body().writeTo(bufferedRequestBody);
} else {
// Write the request body if the "Expect: 100-continue" expectation was met.
BufferedSink bufferedRequestBody = Okio.buffer(
exchange.createRequestBody(request, false));
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
} else {
exchange.noRequestBody();
if (!exchange.connection().isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
// from being reused. Otherwise we're still obligated to transmit the request body to
// leave the connection in a consistent state.
exchange.noNewExchangesOnConnection();
} else {
exchange.noRequestBody();
if (request.body() == null || !request.body().isDuplex()) {
//表明完成了http请求request的写入工作
exchange.finishRequest();
if (!responseHeadersStarted) {
exchange.responseHeadersStart();
if (responseBuilder == null) {
//读取响应头
responseBuilder = exchange.readResponseHeaders(false);
Response response = responseBuilder
.request(request)
.handshake(exchange.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
//读取响应头
response = exchange.readResponseHeaders(false)
.request(request)
.handshake(exchange.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
exchange.responseHeadersEnd(response);
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
//读取响应体
.body(exchange.openResponseBody(response))
.build();
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
exchange.noNewExchangesOnConnection();
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
return response;
主要做了几件事
1.Http1ExchangeCodec(http中所有流对象都封装到了
Http1ExchangeCodec实现类中
),可以简单的理解为它能编码request和解码response
2.exchange.writeRequestHeaders(request);
调用Http1ExchangeCodec的writeRequestHeaders方法写入请求的头部信息
3.写入请求体
BufferedSink bufferedRequestBody = Okio.buffer(
exchange.createRequestBody(request, false));
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
4.exchange.finishRequest()表明完成了http请求request的写入工作
5.exchange.readResponseHeaders
读取响应的Header信息
6.exchange.openResponseBody
读取响应的body信息
三、Connection连接相关源码分析
1.Connection接口
package okhttp3;
import java.net.Socket;
import javax.annotation.Nullable;
public interface Connection {
//返回这个连接使用的Route
Route route();
//返回这个连接使用的Socket
Socket socket();
//如果是HTTPS,返回TLS握手信息用于连接,否则返回null
@Nullable Handshake handshake();
//返回应用层使用的协议,Protocl是个枚举,例如HTTP1.1、HTTP2
Protocol protocol();
2.RealConnection
成员变量和构造函数
public final class RealConnection extends Http2Connection.Listener implements Connection {
private static final String NPE_THROW_WITH_NULL = "throw with null exception";
private static final int MAX_TUNNEL_ATTEMPTS = 21;
//连接池
public final RealConnectionPool connectionPool;
private final Route route;
//内部使用这个rawSocket在TCP层建立连接
private Socket rawSocket;
//如果没有使用HTTPS,那么socket=rawSocket,否则这个socket=SSLSocket
private Socket socket;
//TLS握手
private Handshake handshake;
//应用层协议
private Protocol protocol;
//HTTP2连接
private Http2Connection http2Connection;
//okiok库的BufferedSource和BufferSink,相当于javaIO的输入输出流
private BufferedSource source;
private BufferedSink sink;
// The fields below track connection state and are guarded by connectionPool.
* If true, no new exchanges can be created on this connection. Once true this is always true.
* Guarded by {@link #connectionPool}.
boolean noNewExchanges;
* The number of times there was a problem establishing a stream that could be due to route
* chosen. Guarded by {@link #connectionPool}.
int routeFailureCount;
int successCount;
private int refusedStreamCount;
* The maximum number of concurrent streams that can be carried by this connection. If {@code
* allocations.size() < allocationLimit} then new streams can be created on this connection.
private int allocationLimit = 1;
/** Current calls carried by this connection. */
final List<Reference<Transmitter>> transmitters = new ArrayList<>();
/** Nanotime timestamp when {@code allocations.size()} reached zero. */
long idleAtNanos = Long.MAX_VALUE;
public RealConnection(RealConnectionPool connectionPool, Route route) {
this.connectionPool = connectionPool;
this.route = route;
connect方法
外部可以调用该方法建立连接
public void connect(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled, Call call,
EventListener eventListener) {
if (protocol != null) throw new IllegalStateException("already connected");
RouteException routeException = null;
List<ConnectionSpec> connectionSpecs = route.address().connectionSpecs();
ConnectionSpecSelector connectionSpecSelector = new ConnectionSpecSelector(connectionSpecs);
//路由选择
if (route.address().sslSocketFactory() == null) {
if (!connectionSpecs.contains(ConnectionSpec.CLEARTEXT)) {
throw new RouteException(new UnknownServiceException(
"CLEARTEXT communication not enabled for client"));
String host = route.address().url().host();
if (!Platform.get().isCleartextTrafficPermitted(host)) {
throw new RouteException(new UnknownServiceException(
"CLEARTEXT communication to " + host + " not permitted by network security policy"));
} else {
if (route.address().protocols().contains(Protocol.H2_PRIOR_KNOWLEDGE)) {
throw new RouteException(new UnknownServiceException(
"H2_PRIOR_KNOWLEDGE cannot be used with HTTPS"));
//开始连接
while (true) {
try {
//如果是通道模式,则建立通道连接
if (route.requiresTunnel()) {
connectTunnel(connectTimeout, readTimeout, writeTimeout, call, eventListener);
if (rawSocket == null) {
// We were unable to connect the tunnel but properly closed down our resources.
break;
//否则进行Socket连接,大部分是这种情况
} else {
connectSocket(connectTimeout, readTimeout, call, eventListener);
//建立HTTPS连接
establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener);
eventListener.connectEnd(call, route.socketAddress(), route.proxy(), protocol);
break;
} catch (IOException e) {
closeQuietly(socket);
closeQuietly(rawSocket);
socket = null;
rawSocket = null;
source = null;
sink = null;
handshake = null;
protocol = null;
http2Connection = null;
eventListener.connectFailed(call, route.socketAddress(), route.proxy(), null, e);
if (routeException == null) {
routeException = new RouteException(e);
} else {
routeException.addConnectException(e);
if (!connectionRetryEnabled || !connectionSpecSelector.connectionFailed(e)) {
throw routeException;
if (route.requiresTunnel() && rawSocket == null) {
ProtocolException exception = new ProtocolException("Too many tunnel connections attempted: "
+ MAX_TUNNEL_ATTEMPTS);
throw new RouteException(exception);
if (http2Connection != null) {
synchronized (connectionPool) {
allocationLimit = http2Connection.maxConcurrentStreams();
做了几件事:
1.路由选择
2.开始连接。如果是通道模式,则建立通道连接,否则直接调用connectSocket建立Socket连接,大部分是这种情况。
connectSocket方法
private void connectSocket(int connectTimeout, int readTimeout, Call call,
EventListener eventListener) throws IOException {
Proxy proxy = route.proxy();
Address address = route.address();
//根据代理类型的不同创建Socket
rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP
? address.socketFactory().createSocket()
: new Socket(proxy);
eventListener.connectStart(call, route.socketAddress(), proxy);
rawSocket.setSoTimeout(readTimeout);
try {
//建立Socket连接
Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
} catch (ConnectException e) {
ConnectException ce = new ConnectException("Failed to connect to " + route.socketAddress());
ce.initCause(e);
throw ce;
// The following try/catch block is a pseudo hacky way to get around a crash on Android 7.0
// More details:
// https://github.com/square/okhttp/issues/3245
// https://android-review.googlesource.com/#/c/271775/
try {
//获得Socket的输入输出流
source = Okio.buffer(Okio.source(rawSocket));
sink = Okio.buffer(Okio.sink(rawSocket));
} catch (NullPointerException npe) {
if (NPE_THROW_WITH_NULL.equals(npe.getMessage())) {
throw new IOException(npe);
做了几件事
1.根据代理类型的不同创建Socket
2.建立Socket连接
Platform的connectSocket方法最终会调用rawSocket的connect()方法建立其Socket连接
3.获得Socket的输入输出流
3.RealConnectionPool
成员变量和构造函数
//线程池
private static final Executor executor = new ThreadPoolExecutor(0 /* corePoolSize */,
Integer.MAX_VALUE /* maximumPoolSize */, 60L /* keepAliveTime */, TimeUnit.SECONDS,
new SynchronousQueue<>(), Util.threadFactory("OkHttp ConnectionPool", true));
/** The maximum number of idle connections for each address. */
private final int maxIdleConnections;
private final long keepAliveDurationNs;
//清理连接任务,在executor中执行
private final Runnable cleanupRunnable = () -> {
while (true) {
//调用cleanup方法执行清理逻辑
long waitNanos = cleanup(System.nanoTime());
if (waitNanos == -1) return;
if (waitNanos > 0) {
long waitMillis = waitNanos / 1000000L;
waitNanos -= (waitMillis * 1000000L);
synchronized (RealConnectionPool.this) {
try {
//调用wait方法进入等待
RealConnectionPool.this.wait(waitMillis, (int) waitNanos);
} catch (InterruptedException ignored) {
// 双端队列,保存连接
private final Deque<RealConnection> connections = new ArrayDeque<>();
final RouteDatabase routeDatabase = new RouteDatabase();
boolean cleanupRunning;
public RealConnectionPool(int maxIdleConnections, long keepAliveDuration, TimeUnit timeUnit) {
this.maxIdleConnections = maxIdleConnections;
this.keepAliveDurationNs = timeUnit.toNanos(keepAliveDuration);
// Put a floor on the keep alive duration, otherwise cleanup will spin loop.
if (keepAliveDuration <= 0) {
throw new IllegalArgumentException("keepAliveDuration <= 0: " + keepAliveDuration);
put方法
void put(RealConnection connection) {
assert (Thread.holdsLock(this));
if (!cleanupRunning) {
cleanupRunning = true;
//使用线程池执行清理任务
executor.execute(cleanupRunnable);
//将新建连接插入队列
connections.add(connection);
主要做了几件事:
1.当第一次调用RealConnectionPool 的put方法缓存新建连接时,如果cleanupRunnable还没执行,它首先会使用线程池执行cleanupRunnable
2.然后把新建连接放入双端队列。
cleanupRunnable中会调用cleanup方法进行连接的清理
cleanup方法
long cleanup(long now) {
int inUseConnectionCount = 0;
int idleConnectionCount = 0;
RealConnection longestIdleConnection = null;
long longestIdleDurationNs = Long.MIN_VALUE;
// Find either a connection to evict, or the time that the next eviction is due.
synchronized (this) {
//遍历所有连接,记录空闲连接和正在使用连接各自的数量
for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {
RealConnection connection = i.next();
//如果该连接还在使用,pruneAndGetAllocationCount种通过引用计数的方式判断一个连接是否空闲
// If the connection is in use, keep searching.
if (pruneAndGetAllocationCount(connection, now) > 0) {
inUseConnectionCount++;
continue;
//如果该连接没有在使用, 空闲连接数加1
idleConnectionCount++;
//记录keepalive时间最长的那个空闲连接
// If the connection is ready to be evicted, we're done.
long idleDurationNs = now - connection.idleAtNanos;
if (idleDurationNs > longestIdleDurationNs) {
longestIdleDurationNs = idleDurationNs;
longestIdleConnection = connection;
//默认keepalive时间keepAliveDurationNs最长为5分钟,空闲连接数idleConnectionCount最大为5个
if (longestIdleDurationNs >= this.keepAliveDurationNs
|| idleConnectionCount > this.maxIdleConnections) {
// We've found a connection to evict. Remove it from the list, then close it below (outside
// of the synchronized block).
//如果longestIdleConnection的keepalive时间大于5分钟 或 空闲连接数超过5个
//把longestIdleConnection连接从队列清理掉
connections.remove(longestIdleConnection);
} else if (idleConnectionCount > 0) {
//如果空闲连接数小于5个 并且 longestIdleConnection连接还没到期清理
//返回该连接的到期时间,下次再清理
// A connection will be ready to evict soon.
return keepAliveDurationNs - longestIdleDurationNs;
} else if (inUseConnectionCount > 0) {
//如果没有空闲连接 且 所有连接都还在使用
//返回keepAliveDurationNs,5分钟后再清理
// All connections are in use. It'll be at least the keep alive duration 'til we run again.
return keepAliveDurationNs;
} else {
// 没有任何连接,把cleanupRunning复位
// No connections, idle or in use.
cleanupRunning = false;
return -1;
//把longestIdleConnection连接从队列清理掉后,关闭该连接的socket,返回0,立即再次进行清理
closeQuietly(longestIdleConnection.socket());
// Cleanup again immediately.
return 0;
主要做了几件事
该方法返回现在到下次清理的时间间隔
1.首先遍历所有连接
记录空闲连接数idleConnectionCount和正在使用连接数inUseConnectionCount,在记录空闲连接数时,还要找出空闲时间最长的空闲连接longestIdleConnection,这个连接是很有可能被清理的;
2.遍历完后,根据最大空闲时长和最大空闲连接数来决定是否清理longestIdleConnection
如果longestIdleConnection的空闲时间大于最大空闲时长 或 空闲连接数大于最大空闲连接数,那么该连接就会被从队列中移除,然后关闭该连接的socket,返回0,立即再次进行清理;
如果空闲连接数小于5个 并且 longestIdleConnection的空闲时间小于最大空闲时长即还没到期清理,那么返回该连接的到期时间,下次再清理;
如果没有空闲连接 且 所有连接都还在使用,那么返回默认的keepAlive时间,5分钟后再清理;
如果没有任何连接,idleConnectionCount和inUseConnectionCount都为0,把cleanupRunning复位,等待下一次put连接时,再次使用线程池执行cleanupRunnable。
4.ExchangeFinder
find方法
它是创建连接入口
public ExchangeCodec find(
OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
int connectTimeout = chain.connectTimeoutMillis();
int readTimeout = chain.readTimeoutMillis();
int writeTimeout = chain.writeTimeoutMillis();
int pingIntervalMillis = client.pingIntervalMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
//调用findHealthyConnection方法,返回RealConnection
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
return resultConnection.newCodec(client, chain);
} catch (RouteException e) {
trackFailure();
throw e;
} catch (IOException e) {
trackFailure();
throw new RouteException(e);
做了几件事
1. 调用findHealthyConnection方法,返回RealConnection
2.调用realConnection.newCodec创建并返回Http1ExchangeCodec(http中所有流对象操作都封装到了Http1ExchangeCodec实现类中
)
findHealthyConnection方法
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
boolean doExtensiveHealthChecks) throws IOException {
//一个死循环
while (true) {
//调用findConnection方法,返回RealConnection
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
pingIntervalMillis, connectionRetryEnabled);
// If this is a brand new connection, we can skip the extensive health checks.
synchronized (connectionPool) {
if (candidate.successCount == 0 && !candidate.isMultiplexed()) {
return candidate;
// Do a (potentially slow) check to confirm that the pooled connection is still good. If it
// isn't, take it out of the pool and start again.
//判断连接是否可用
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
candidate.noNewExchanges();
continue;
return candidate;
主要做了几件事
1.调用findConnection方法,返回RealConnection
2.判断连接是否可用
3.这是个死循环,只有找到可用的连接realconnection才会返回
findConnection方法
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
boolean foundPooledConnection = false;
RealConnection result = null; //返回结果,可用的连接
Route selectedRoute = null;
RealConnection releasedConnection;
Socket toClose;
synchronized (connectionPool) {
if (transmitter.isCanceled()) throw new IOException("Canceled");
hasStreamFailure = false; // This is a fresh attempt.
// Attempt to use an already-allocated connection. We need to be careful here because our
// already-allocated connection may have been restricted from creating new exchanges.
//尝试使用已经创建过的连接,已经创建过的连接可能已经被限制创建新的流
releasedConnection = transmitter.connection;
//如果已经创建过的连接已经被限制创建新的流,就释放该连接(releaseConnectionNoEvents中会把该连接置空),并返回该连接的Socket以关闭
toClose = transmitter.connection != null && transmitter.connection.noNewExchanges
? transmitter.releaseConnectionNoEvents()
: null;
//如果已经创建过的连接还能使用,就直接使用它当作结果、
if (transmitter.connection != null) {
// We had an already-allocated connection and it's good.
result = transmitter.connection;
releasedConnection = null;
//如果已经创建过的连接不能使用
if (result == null) {
//尝试从连接池中找可用的连接,如果找到,这个连接会赋值先保存在Transmitter中
// Attempt to get a connection from the pool.
if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, null, false)) {
//从连接池中找到可用的连接
foundPooledConnection = true;
result = transmitter.connection;
} else if (nextRouteToTry != null) {
selectedRoute = nextRouteToTry;
nextRouteToTry = null;
} else if (retryCurrentRoute()) {
selectedRoute = transmitter.connection.route();
closeQuietly(toClose);
if (releasedConnection != null) {
eventListener.connectionReleased(call, releasedConnection);
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
if (result != null) {
//如果在上面已经找到了可用连接,直接返回结果
// If we found an already-allocated or pooled connection, we're done.
return result;
//走到这里没有找到可用连接,看看是否需要路由选择,多IP操作
// If we need a route selection, make one. This is a blocking operation.
boolean newRouteSelection = false;
if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
newRouteSelection = true;
routeSelection = routeSelector.next();
List<Route> routes = null;
synchronized (connectionPool) {
if (transmitter.isCanceled()) throw new IOException("Canceled");
//如果有下一个路由
if (newRouteSelection) {
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. This could match due to connection coalescing.
routes = routeSelection.getAll();
//这里第二次尝试从连接池中找可用连接
if (connectionPool.transmitterAcquirePooledConnection(
address, transmitter, routes, false)) {
//从连接池中找到可用的连接
foundPooledConnection = true;
result = transmitter.connection;
//在连接池中没有找到可用连接
if (!foundPooledConnection) {
if (selectedRoute == null) {
selectedRoute = routeSelection.next();
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
//所以这里新创建一个连接,后面会进行Socket连接
result = new RealConnection(connectionPool, selectedRoute);
connectingConnection = result;
// 如果在连接池中找到可用的连接,直接返回该连接
// If we found a pooled connection on the 2nd time around, we're done.
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
return result;
// 调用RealConnection的connect方法进行Socket连接,这个在RealConnection中讲过
// Do TCP + TLS handshakes. This is a blocking operation.
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
connectionPool.routeDatabase.connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
connectingConnection = null;
// Last attempt at connection coalescing, which only occurs if we attempted multiple
// concurrent connections to the same host.
// 如果我们刚刚创建了同一地址的多路复用连接,释放这个连接并获取那个连接
if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, routes, true)) {
// We lost the race! Close the connection we created and return the pooled connection.
result.noNewExchanges = true;
socket = result.socket();
result = transmitter.connection;
// It's possible for us to obtain a coalesced connection that is immediately unhealthy. In
// that case we will retry the route we just successfully connected with.
nextRouteToTry = selectedRoute;
} else {
// 把刚刚新建的连接放入连接池
connectionPool.put(result);
// 把刚刚新建的连接保存到Transmitter的connection字段
transmitter.acquireConnectionNoEvents(result);
closeQuietly(socket);
eventListener.connectionAcquired(call, result);
return result;
主要做了几件事
1.尝试使用已经创建过的连接,已经创建过的连接可能已经被限制创建新的流
2.如果已经创建过的连接已经被限制创建新的流,就释放该连接(releaseConnectionNoEvents中会把该连接置空),并返回该连接的Socket以关闭
3.如果已经创建过的连接还能使用,就直接使用它当作结果、
4.如果已经创建过的连接不能使用
尝试从连接池中找可用的连接,如果找到,这个连接会赋值先保存在Transmitter中
5.如果无法使用已经创建过的连接
看看是否需要路由选择,多IP操作。
如果有下一个路由,第二次尝试从连接池中找可用连接。
如果在连接池中没有找到可用连接,新创建一个连接,后面会进行Socket连接
6.调用RealConnection的connect方法进行Socket连接,这个在RealConnection中讲过
7.如果我们刚刚创建了同一地址的多路复用连接,释放这个连接并获取那个连接。
否则把刚刚新建的连接放入连接池、保存到Transmitter的connection字段
大概过程如下图:
okhttp3版本3.14.9一、简介1.请求流程图发出请求前,会经过interceptorChain,拦截链2.常见的拦截链有RetryAndFollowUpInterceptor重试与重定向拦截器用来实现重试和重定向功能,内部通过while(true)死循环来进行重试获取Response(有重试上限,超过会抛出异常)。followUpRequest主要用来根据响应码来判断属于哪种行为触发的重试和重定向(比如未授权,超时,重定向等),然后构建响应的Request进行下.
OkHttpCall<Object> okHttpCall = new OkHttpCall<>(serviceMethod, args);
代码很简单,那我们就来探究下这个OkHttpCall能干什么:
final class OkHttpCall<T> impleme
使用OkHttp3发送Http请求并获得响应的过程大体为:
创建OkHttpClient对象。OkHttpClient为网络请求执行的一个中心,它会管理连接池,缓存,SocketFactory,代理,各种超时时间,DNS,请求执行结果的分发等许多内容。
创建Request对象。Request用于描述一个HTTP请求,比如请求的方法是"GET"还是"POST",请求的UR
前言:应用程序需要发送网络请求服务器的接口,可使用OkHttp 3发送请求获取服务端数据
GitHut地址
Step 1:申请网络请求的权限:在manifests层的AndroidManifest.xml里的
<manifest控件里添加:
<!--允许程序打开网络套接字-->
<uses-permission android:name="android.permission.INTERNET" />
Step 2:引入依赖:在Gradle Scripts层的
retrofit是一款好用的http框架,在项目集成retrofit时,有时候会启动报关于okhttp错,如下:
the follollowing method did not exists:
okhttp3.HttpUrl.get(Ljava/lang/String;)Lokhttp3/HttpUrl;
解决思路:
排除retrofit 的okhttp3依赖,强依赖okhttp3 3.12.0版本
<dependency>
<groupId>com.g...
错误出现的场景描述
我们的项目中使用了Retrofit 结合 RxJava、RxAndroid 调用后台接口,在 Retrofit 中有个拦截器,去拦截打印log 信息。当调用
chain.proceed(newRequest)
方法的时候出现上述错误。
这不是个必现的错误。只是调用某些接口才会出现。从Retrofit 的源码可以知道。当 Retrofit 的网络请求未完成,而观察者已经取...
从左到右遍历A[]时,对于相同值元素A[j],是按照从右往左依次填充至result[]中的,这样A中的相同元素就会逆序填充到res数组中。
因此正确的做法应该是,修改第27行,从右到左遍历A[]
for (int j=A.length-1; j>=0; j--) {
【十八】常见十种排序算法总结笔记
程序猿皮卡丘:
【十八】常见十种排序算法总结笔记
程序猿皮卡丘:
【十八】常见十种排序算法总结笔记
程序猿皮卡丘:
VMware下的Centos7操作(NAT固定IP、开始SSH服务、开启远程ROOT密码登录)