相关文章推荐
深情的毛豆  ·  使用 nohup java - jar ...·  3 月前    · 
仗义的大蒜  ·  Qt 之 QPixmap - 简书·  1 年前    · 
伤情的毛巾  ·  【解决问题】TypeError: ...·  1 年前    · 
Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Learn more about Collectives

Teams

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Learn more about Teams

RuntimeError: Given groups=1, weight of size [64, 32, 3, 3], expected input[128, 64, 32, 32] to have 32 channels, but got 64 channels instead

Ask Question

I am trying to experiment with why we have a Vanishing & exploding gradient, and why Resnet is so helpful in avoiding the two problems above. So I decided to train a plain Convolution network with many layers just to know why the model LOSS increases as I train with many layers e.g 20 layers. but I am getting this error at some point, I can figure out what might be the issue, but I know it is from my model Architecture.

images.shape: torch.Size([128, 3, 32, 32])
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-80-0ad7109b33c1> in <module>
      1 for images, labels in train_dl:
      2     print('images.shape:', images.shape)
----> 3     out = model(images)
      4     print('out.shape:', out.shape)
      5     print('out[0]:', out[0])
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),
<ipython-input-78-81b21c16ed79> in forward(self, xb)
     32     def forward(self, xb):
---> 33         return self.network(xb)
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input)
    115     def forward(self, input):
    116         for module in self:
--> 117             input = module(input)
    118         return input
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
    422     def forward(self, input: Tensor) -> Tensor:
--> 423         return self._conv_forward(input, self.weight)
    425 class Conv3d(_ConvNd):
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight)
    418                             _pair(0), self.dilation, self.groups)
    419         return F.conv2d(input, weight, self.bias, self.stride,
--> 420                         self.padding, self.dilation, self.groups)
    422     def forward(self, input: Tensor) -> Tensor:
RuntimeError: Given groups=1, weight of size [64, 32, 3, 3], expected input[128, 64, 32, 32] to have 32 channels, but got 64 channels instead

My model Architecture is

class Cifar10CnnModel(ImageClassificationBase):
    def __init__(self):
        super().__init__()
        self.network = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.Conv2d(32, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2), # output: 64 x 16 x 16
            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2), # output: 128 x 8 x 8
            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2), # output: 256 x 4 x 4
            nn.Flatten(), 
            nn.Linear(256*4*4, 1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Linear(512, 10))
    def forward(self, xb):
        return self.network(xb)
for images, labels in train_dl:
    print('images.shape:', images.shape)
    out = model(images)
    print('out.shape:', out.shape)
    print('out[0]:', out[0])
    break

I can see by the model, it looks like you made a typo on the 4th conv block in your sequential. You have

nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),

However, you already convert the image to 64 channels and you then pass it in to the next conv block as an image with 32 channels which results in the error you have above.

Fix this to:

self.network = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1),
            nn.Conv2d(32, 32, kernel_size=3, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
            # Change this from 32 to now 64 like I did here.
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2, 2), # output: 64 x 16 x 16

Sarthak Jain

yes you are right, it was a typo. I changed the 32 input channel to 64 and it is working fine now. thanks – chuky pedro Jul 5, 2021 at 8:16

Thanks for contributing an answer to Stack Overflow!

  • Please be sure to answer the question. Provide details and share your research!

But avoid

  • Asking for help, clarification, or responding to other answers.
  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.