相关文章推荐
失眠的芹菜  ·  自定义 input ...·  6 天前    · 
腼腆的菠菜  ·  js 的input checked ...·  2 天前    · 
威武的蜡烛  ·  React报错之React Hook ...·  1 年前    · 

一 简介:

TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟、高吞吐率的部署推理。TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。

在平时的工作与学习中也都尝试过使用Libtorch和onnxruntime的方式部署过深度学习模型。但这两款多多少少存在着内存与显存占用的问题,并且无法完全释放。(下文的部署方式不仅简单并且在前向推理过程所需的显存更低,并且在推理结束后可以随时完全释放显存)。

二 安装:

1.安装环境

win10

vs2019

cuda10.2

pytorch1.9

只要其中的pytorch,cuda版本与后续的Tensorrt版本对应即可

2.模型转化

首先需要将pytorch的.pth模型转化为onnx的模型(为了后边的方便,目前讲解的方式都是单卡的方式)。转化方式很简单pytorch已经提供,网上也有许多讲解这个函数的博客。此处直接上代码:(必须确定.pth模型是可以正常使用的否则后面转化的模型也都无法使用)。

def Convert_ONNX(model,input_size):
    model.eval()
    dummy_input = torch.randn(input_size).cuda()
    torch.onnx.export(model,         # model being run    
         dummy_input,       # model input (or a tuple for multiple inputs) 
         "PytorchtoOnnx.onnx",       # where to save the model  
#           dynamic_axes = {'inputs':{0:"batch"}},   #表示batch这个维度可变的  (有这个参数可以关闭不用设置)会麻烦很多
         verbose = True,
         export_params=True,  # store the trained parameter weights inside the model file 
         input_names = ['inputs'],   # the model's input names 
         output_names = ['modelOutput']) # the model's output names 
    print("end")

3.将onnx模型通过tensorrt自带工具完成转化

首先去官网https://developer.nvidia.com/nvidia-tensorrt-download下载与自己pytorch版本和cuda版本适应的tensorrt版本。

深度学习模型C++部署TensorRT

下载完成后打开里面的bin文件夹,里面存在着一个trtexec.exe。利用以下代码将之前获得的onnx文件转化为trt文件。这里讲解最简单的方式,因为trtexec.exe有许多可以优化的功能,最终都会影响模型的精度与速度。在命令行中输入如下指令。

trtexec.exe --onnx=PytorchtoOnnx.onnx --saveEngine=TrtModel.trt --explicitBatch --workspace=4096

深度学习模型C++部署TensorRT

这里模型转化可能需要一点时间,完成转化后会得到TrtMedel.trt模型。那么准备工作也就完成了。接下来开始C++部署。

三 部署:

1.打开VS新建空项目

2.配置环境

在VC++目录—包含目录中添加cuda路径和tensorrt路径(此处用的是相对路径,你也可以用绝对路径)其中$(CUDA_PATH)\include是指cuda中的include文件,我的在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

深度学习模型C++部署TensorRT

在VC++目录—库目录中添加

深度学习模型C++部署TensorRT

还需要将字符集改成:使用多字节字符集。否则会报C2664 “HMODULE LoadLibraryW(LPCWSTR)”: 无法将参数 1 从“const _Elem *”转换为“LPCWSTR”  的错误。

深度学习模型C++部署TensorRT

3.部署代码

必须新建一个logger.cpp的文件。里面写入如下代码。

#include "logger.h"
#include "ErrorRecorder.h"
#include "logging.h"
SampleErrorRecorder gRecorder;
namespace sample
Logger gLogger{Logger::Severity::kINFO};
LogStreamConsumer gLogVerbose{LOG_VERBOSE(gLogger)};
LogStreamConsumer gLogInfo{LOG_INFO(gLogger)};
LogStreamConsumer gLogWarning{LOG_WARN(gLogger)};
LogStreamConsumer gLogError{LOG_ERROR(gLogger)};
LogStreamConsumer gLogFatal{LOG_FATAL(gLogger)};
void setReportableSeverity(Logger::Severity severity)
    gLogger.setReportableSeverity(severity);
    gLogVerbose.setReportableSeverity(severity);
    gLogInfo.setReportableSeverity(severity);
    gLogWarning.setReportableSeverity(severity);
    gLogError.setReportableSeverity(severity);
    gLogFatal.setReportableSeverity(severity);
} // namespace sample

再新建一个test.cpp进行测试。测试代码如下:(下面是一个unet的分割模型,并且前面的预处理例如标准化等都在外面完成了。下面只涉及到推理部分)。

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#include <cuda_runtime_api.h>
#include "NvInfer.h"
#include "argsParser.h"
#include "logger.h"
#include "common.h"
#include "NvOnnxParser.h"
#include "buffers.h"
using namespace nvinfer1;
bool read_TRT_File(const std::string& engineFile, ICudaEngine*& engine)
  fstream file;
  file.open(engineFile, ios::binary | ios::in);
  file.seekg(0, ios::end);                     // 定位到 fileObject 的末尾
  int length = file.tellg();
  file.seekg(0, std::ios::beg);                // 定位到 fileObject 的开头
  unique_ptr<char[]> data(new char[length]);
  file.read(data.get(), length);
  file.close();
  nvinfer1::IRuntime* trtRuntime = createInferRuntime(sample::gLogger.getTRTLogger());
  engine = trtRuntime->deserializeCudaEngine(data.get(), length, nullptr);
  assert(engine != nullptr);
  std::cout << "The engine in TensorRT.cpp is not nullptr" << std::endl;
  //trtModelStream = engine->serialize();
  trtRuntime->destroy();
  return true;
void doInference(IExecutionContext& context, float* input, float* output,int InputSize, int OutPutSize,int BatchSize)
  const char* INPUT_BLOB_NAME = "inputs";
  const char* OUTPUT_BLOB_NAME = "modelOutput";
  const ICudaEngine& engine = context.getEngine();
  // input and output buffer pointers that we pass to the engine - the engine requires exactly IEngine::getNbBindings(),
  // of these, but in this case we know that there is exactly one input and one output.
  assert(engine.getNbBindings() == 2);
  void* buffers[2];
  // In order to bind the buffers, we need to know the names of the input and output tensors.
  // note that indices are guaranteed to be less than IEngine::getNbBindings()
  const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
  const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
  // DebugP(inputIndex); DebugP(outputIndex);
  // create GPU buffers and a stream
  CHECK(cudaMalloc(&buffers[inputIndex], InputSize * sizeof(float)));
  CHECK(cudaMalloc(&buffers[outputIndex], OutPutSize * sizeof(float)));
  cudaStream_t stream;
  CHECK(cudaStreamCreate(&stream));
  // DMA the input to the GPU,  execute the batch asynchronously, and DMA it back:
  CHECK(cudaMemcpyAsync(buffers[inputIndex], input, InputSize * sizeof(float), cudaMemcpyHostToDevice, stream));
  context.enqueue(BatchSize, buffers, stream, nullptr);
  CHECK(cudaMemcpyAsync(output, buffers[outputIndex], OutPutSize * sizeof(float), cudaMemcpyDeviceToHost, stream));
  cudaStreamSynchronize(stream);
  // release the stream and the buffers
  cudaStreamDestroy(stream);
  CHECK(cudaFree(buffers[inputIndex]));
  CHECK(cudaFree(buffers[outputIndex]));
void runs(short* Data, int ImageCol, int ImageRow, int ImageLayer, unsigned char* Outputs)
  int numall = ImageCol * ImageRow * ImageLayer;
  float* PatchData = new float[numall];
  Process(Data, ImageCol, ImageRow, ImageLayer, PatchData);   //前处理
  string eigineFile = "TrtMedel.trt";
  ICudaEngine* engine = nullptr;
  read_TRT_File(eigineFile, engine);
  IExecutionContext* context = engine->createExecutionContext();
  assert(context != nullptr);
  float* out_image = new float[3 * numall];
  int batchsize = 1;
  int InputSize = 1 * 1 * numall;
  int OutputSize = 1 * 3 * numall;
  doInference(*context, PatchData, out_image, InputSize, OutputSize, batchsize);
  EndProcess(out_image, 3, ImageCol, ImageRow, ImageLayer, Outputs);   //后处理
  context->destroy();
  engine->destroy();
  cudaDeviceReset();      
  delete[] out_image;
  delete[] PatchData;
  cout<<"柯西的笔"<<endl;

四 总结

如上代码可以即可以正常运行编译。目前Tensorrt只支持20系以上显卡,在10系显卡也可以部署但是并没有什么明显的加速效果,但是显存还是会比其他部署模块低。

如何涉及到整个项目完整在无CUDA环境中的部署,其实也很简单。有需求的可以私信我。(也请关注柯西的笔公众。

解决PackagesNotFoundError: The following packages are not available from current channels:问题 2022年5月6日 YOLOX优点介绍与解析,详细易懂。 2023年2月20日 安装python库报错:Consider using the `–user` option or check the permissions. 2023年3月11日 深度学习的问题 2022年3月29日 基于Livox激光雷达的激光-惯性里程计:Lio-Livox 开源 2022年1月18日 【人工智能原理自学】LSTM网络:自然语言处理实践 2023年2月26日 OpenCV中的图像处理 —— 图像阈值+图像平滑+形态转换 2022年3月23日 【目标检测】YOLOv5遇上知识蒸馏 2023年2月16日 2023年4月6日 【历史上的今天】3 月 23 日:网景创始人出生;FORMAC 语言的开发者诞生;PRMan 非商业版发布 2023年4月5日 「数据压缩04」BMP-YUV 2022年6月8日 目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构(高性能骨干|仅需1ms) 2023年3月4日 7.Deep Interest Network for Click-Through Rate Prediction论文详解 2022年2月22日 如何利用DGL官方库中的rgcn链接预测代码跑自己的数据集(如何在DGL库的链接预测数据集模块定义自己的数据集类) 2023年2月25日 手撕Resnet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。 2022年3月28日