Abstract: Shock wave/Turbulent Boundary Layer Interaction(STBLI) is ubiquitous in internal and external of supersonic and hypersonic flow. The physical mechanism of low-frequency unsteadiness, which is found in shock-induced separation and appears as low-frequency shock motion accompanied with the expansion and contraction of the separation bubble, has been disputed. This research field has been widely concerned and studied. The driving mechanism of low-frequency unsteadiness could be generally divided into three categories. Some researchers believed that the source of the low-frequency unsteadiness originated in the upstream boundary layer. On the contrary some scholars held the opinion that the low-frequency dynamics was dominated by intrinsic nature of downstream separation flow. However, some recent researches trended to reconcile these two opposite views, believing that the upstream and downstream mechanisms co-existed with a weighting function depending on the state of the STBLI. The coupling between shock wave and boundary layer was assumed as a dynamics system, which could be represented as a first-order low-pass filter. This system responded selectively to the perturbations below certain frequency regardless of whether they came from upstream or downstream. The above three physical mechanisms are reviewed respectively. In addition, some research areas which need further attentions are present based on the existing results and the authors' knowledge.

Key words: shock wave, turbulent boundary layer, interaction, flow separation, low-frequency unsteadiness [1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.
[2] BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011: 1-5.
[3] BABINSKY H, HARVEY J K. 激波边界层干扰[M]. 白菡尘, 译. 北京: 国防工业出版社, 2015: 1-5. BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. BAI H C, translated. Beijing: National Defense Industry Press, 2015: 1-5(in Chinese).
[4] GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99.
[5] 杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019: 157-177. YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019: 157-177(in Chinese).
[6] HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122.
[7] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469-492.
[8] DUSSAUGE J P, DUPONT P, DEBIÈVE J F. Unsteadiness in shock wave boundary layer interactions with separation[J]. Aerospace Science and Technology, 2006, 10(2): 85-91.
[9] POGGIE J, BISEK N J, KIMMEL R L, et al. Spectral characteristics of separation shock unsteadiness[J]. AIAA Journal, 2015, 53(1): 200-214.
[10] PLOTKIN K J. Shock wave oscillation driven by turbulent boundary-layer fluctuations[J]. AIAA Journal, 1975, 13(8): 1036-1040.
[11] DOLLING D S, OR C T. Unsteadiness of the shock wave structure in attached and separated compression ramp flows[J]. Experiments in Fluids, 1985, 3(1): 24-32.
[12] EVANS T, PODDAR K, SMITS A J. Compilation of wall pressure data for a shock wave boundary layer interaction generated by a blunt fin: 1908T[R]. Princeton: Princeton University, 1990.
[13] GONSALEZ J C, DOLLING D S. Correlation of interaction sweepback effects on the dynamics of shock-induced turbulent separation: AIAA-1993-0776[R]. Reston: AIAA, 1993.
[14] BRUSNIAK L, DOLLING D S. Physics of unsteady blunt-fin induced shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1994, 273: 375-409.
[15] SARTOR F, METTOT C, BUR R, et al. Unsteadiness in transonic shock-wave/boundary-layer interactions: Experimental investigation and global stability analysis[J]. Journal of Fluid Mechanics, 2015, 781: 550-577.
[16] ERENGIL M E, DOLLING D S. Unsteady wave structure near separation in a Mach 5 compression ramp interaction[J]. AIAA Journal, 1991, 29(5): 728-735.
[17] RINGUETTE M, SMITS A. Wall-pressure measurements in a Mach 3 shock-wave turbulent boundary layer interaction at a DNS accessible Reynolds number: AIAA-2007-4113[R]. Reston: AIAA, 2007.
[18] WU M W, MARTÍN M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594: 71-83.
[19] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24: 076101.
[20] PORTER K M, POGGIE J. Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow[J]. Physics of Fluids, 2019, 31: 016104.
[21] DESHPANDE A S, POGGIE J. Unsteadiness of shock-wave/boundary-layer interaction with sidewalls: AIAA-2020-0581[R]. Reston: AIAA, 2020.
[22] DUPONT P, HADDAD C, DEBIÈVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559: 255-277.
[23] TOUBER E, SANDHAM N. Oblique shock impinging on a turbulent boundary layer: Low-frequency mechanisms: AIAA-2008-4170[R]. Reston: AIAA, 2008.
[24] AGOSTINI L, LARCHEVE^QUE L, DUPONT P. Mechanism of shock unsteadiness in separated shock/boundary-layer interactions[J]. Physics of Fluids, 2015, 27: 126103.
[25] 王博. 激波/湍流边界层相互作用流场组织结构研究[D]. 长沙: 国防科技大学, 2015: 89-94. WANG B. The investigation into the shock wave/boundary-layer interaction flow field organization[D]. Changsha: National University of Defense Technology, 2015: 89-94(in Chinese).
[26] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823: 617-657.
[27] PADMANABHAN S, CASTRO MALDONADO J, THREADGILL J A, et al. Experimental study of swept impinging oblique shock boundary layer interaction: AIAA-2019-0340[R]. Reston: AIAA, 2019.
[28] 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰三维分离泡直接数值模拟[J/OL]. 航空学报,(2021-04-09)[2021-07-16].https://kns.cnki.net/kcms/detail/11.1929.V.20210409.0916.004.html. TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of 3D separation bubble in shock wave and supersonic boundary layer interaction[J/OL]. Acta Aeronautica et Astronautica Sinica,(2021-04-09)[2021-07-16]. https://kns.cnki.net/kcms/detail/11.1929.V.20210409.0916.004.html.
[29] DOLLING D S, SMITH D R. Unsteady shock-induced separation in Mach 5 cylinder interactions[J]. AIAA Journal, 1989, 27(12): 1598-1706.
[30] DOLLING D S, BRUSNIAK L. Separation shock motion in fin, cylinder, and compression ramp-induced turbulent interactions[J]. AIAA Journal, 1989, 27(6): 734-742.
[31] COMBS C S, SCHMISSEUR J D, BATHEL B F, et al. Unsteady analysis of shock-wave/boundary-layer interaction experiments at Mach 4.2[J]. AIAA Journal, 2019, 57(11): 4715-4724.
[32] SOUVEREIN L J, DUPONT P, DEBIÈVE J F, et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal, 2010, 48(7): 1480-1493.
[33] HUMBLE R A, SCARANO F, VAN OUDHEUSDEN B W. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635: 47-74.
[34] THREADGILL J A, BRUCE P J. Unsteadiness in shock wave boundary layer interactions across multiple interaction configurations: AIAA-2015-1977[R]. Reston: AIAA, 2015.
[35] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12): 2412-2422.
[36] HOU Y X, CLEMENS N T, DOLLING D S. Wide-field PIV study of shock-induced turbulent boundary layer separation: AIAA-2003-0441[R]. Reston: AIAA, 2003.
[37] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Large-scale motions in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 556: 271-282.
[38] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Effects of upstream boundary layer on the unsteadiness of shock-induced separation[J]. Journal of Fluid Mechanics, 2007, 585: 369-394.
[39] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Low-frequency dynamics of shock-induced separation in a compression ramp interaction[J]. Journal of Fluid Mechanics, 2009, 636: 397-425.
[40] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622: 33-62.
[41] VANSTONE L, SALEEM M, SECKIN S, et al. Experimental investigation of unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2: AIAA-2015-2932[R]. Reston: AIAA, 2015.
[42] VANSTONE L, MUSTA M N, CLEMENS N T, et al. Investigation of unsteadiness in a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV: AIAA-2016-3338[R]. Reston: AIAA, 2016.
[43] VANSTONE L, SALEEM M, SECKIN S, et al. Role of boundary-layer on unsteadiness on a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV: AIAA-2017-0757[R]. Reston: AIAA, 2017.
[44] VANSTONE L, CLEMENS N T. Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2[J]. AIAA Journal, 2019, 57(8): 3395-3409.
[45] DUPONT P, PIPONNIAU S, SIDORENKO A, et al. Investigation by particle image velocimetry measurements of oblique shock reflection with separation[J]. AIAA Journal, 2008, 46(6): 1365-1370.
[46] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18: 065113.
[47] PADMANABHAN S, MALDONADO J C, THREADGILL J A, et al. Root influence on the unsteady characteristics of swept impinging oblique SBLIs: AIAA-2020-0580[R]. Reston: AIAA, 2020.
[48] PIPONNIAU S, DUSSAUGE J P, DEBIÈVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87-108.
[49] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699: 1-49.
[50] HUANG X, ESTRUCH-SAMPER D. Low-frequency unsteadiness of swept shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics, 2018, 856: 797-821.
[51] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(2): 79-107.
[52] ADLER M C, GAITONDE D V. Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations[J]. Journal of Fluid Mechanics, 2018, 840: 291-341.
[53] PRIEBE S, TU J H, ROWLEY C W, et al. Low-frequency dynamics in a shock-induced separated flow[J]. Journal of Fluid Mechanics, 2016, 807: 441-477.
[54] CAO S B, KLIOUTCHNIKOV I, OLIVIER H. Görtler vortices in hypersonic flow on compression ramps[J]. AIAA Journal, 2019, 57(9): 3874-3884.
[55] WU W, MENEVEAU C, MITTAL R. Spatio-temporal dynamics of turbulent separation bubbles[J]. Journal of Fluid Mechanics, 2020, 883: A45.
[56] ZHUANG Y, TAN H J, LIU Y Z, et al. High resolution visualization of Görtler-like vortices in supersonic compression ramp flow[J]. Journal of Visualization, 2017, 20(3): 505-508.
[57] ZHUANG Y, TAN H J, LI X, et al. Görtler-like vortices in an impinging shock wave/turbulent boundary layer interaction flow[J]. Physics of Fluids, 2018, 30: 061702.
[58] 陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学力学天文学, 2020, 50(10): 61-72. LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2020, 50(10): 61-72(in Chinese).
[59] TOUBER E, SANDHAM N D. Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2011, 671: 417-465.
[60] NICHOLS J W, LARSSON J, BERNARDINI M, et al. Stability and modal analysis of shock/boundary layer interactions[J]. Theoretical and Computational Fluid Dynamics, 2017, 31: 33-50.
[61] SOUVEREIN L J, VAN OUDHEUSDEN B W, SCARANO F, et al. Application of a dual-plane particle image velocimetry(dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction[J]. Measurement Science and Technology, 2009, 20: 074003.
[62] MARTÍN M P, PRIEBE S, HELM C M. Upstream and downstream influence on STBLI instability: AIAA-2016-3341[R]. Reston: AIAA, 2016.
[63] BRUCE P J K, BURTON D M F, TITCHENER N A, et al. Corner effect and separation in transonic channel flows[J]. Journal of Fluid Mechanics, 2011, 679: 247-262.
[64] BABINSKY H, OOREBEEK J, COTTINGHAM T. Corner effects in reflecting oblique shock-wave/boundary-layer interactions: AIAA-2013-0859[R]. Reston: AIAA, 2013.
[65] WANG B, SANDHAM N D, HU Z W, et al. Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects[J]. Journal of Fluid Mechanics, 2015, 767: 526-561.
[66] XIANG X, BABINSKY H. Corner effects in oblique shock wave/boundary layer interactions in rectangular channels: AIAA-2017-0984[R]. Reston: AIAA, 2017.
[67] LU X G, YI S H, HE L, et al. Experimental study on unsteady characteristics of shock and turbulent boundary layer interactions[J]. Fluid Dynamics, 2020, 55(4): 566-577.
[68] ADLER M C, GAITONDE D V. Dynamics of strong swept-shock/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics, 2020, 896: A29.
[69] 黄蓉. 高超声速内外流中若干典型脉动压力问题[D]. 合肥: 中国科学技术大学, 2019: 31-51. HUANG R. Characteristics of the fluctuating pressure in the internal/external integration flow of a hypersonic vehicle[D]. Hefei: University of Science and Technology of China, 2019: 31-51(in Chinese).
[70] WANG Z A, CHANG J T, HOU W X, et al. Low-frequency unsteadiness of shock-wave/boundary-layer interaction in an isolator with background waves[J]. Physics of Fluids, 2020, 32: 056105.
[71] WANG Z A, CHANG J T, HOU W X, et al. Propagation of shock-wave/boundary-layer interaction unsteadiness in attached and separated flows[J]. AIP Advances, 2020, 10: 105011.
[72] SOUVEREIN L J, BAKKER P G, DUPONT P. A scaling analysis for turbulent shock-wave/boundary-layer interactions[J]. Journal of Fluid Mechanics, 2013, 714: 505-535.
[73] HONG Y T, LI Z F, YANG J M. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions[J]. Chinese Journal of Aeronautics, 2021, 34(5): 504-509.
[74] BENEK J A, SUCHYTA C J, BABINSKY H. The effect of wind tunnel size and shock strength on incident shock boundary layer interaction experiments: AIAA-2014-3336[R]. Reston: AIAA, 2014.
[75] SANSICA A, SANDHAM N D, HU Z. Forced response of a laminar shock-induced separation bubble[J]. Physics of Fluids, 2014, 26: 093601.
[76] LARCHEVÊQUE L. Low-and medium-frequency unsteadinesses in a transitional shock-boundary reflection with separation: AIAA-2016-1833[R]. Reston: AIAA, 2016.
[77] SANSICA A, SANDHAM N D, HU Z W. Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble[J]. Journal of Fluid Mechanics, 2016, 798: 5-26.
[78] HILDEBRAND N, DWIVEDI A, NICHOLS J W, et al. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92[J]. Physical Review Fluids, 2018, 3: 013906.
[79] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析[J]. 力学学报, 2017, 49(1): 93-104. TONG F L, LI X L, TANG Z G. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104(in Chinese).
[80] GIEPMAN R, SCHRIJER F, VAN OUDHEUSDEN B. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56: 113.
[81] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844: 187-215.
[82] DIOP M, PIPONNIAU S, DUPONT P. High resolution LDA measurements in transitional oblique shock wave boundary layer interaction[J]. Experiments in Fluids, 2019, 60: 57.
[83] XIANG X, BABINSKY H. An experimental study of corner flow control applied to an oblique shock-wave/boundary-layer interaction: AIAA-2018-1532[R]. Reston: AIAA, 2018.
[84] 董明, 赵慧勇. 超声速边界层中壁面抽吸对流动分离的抑制作用[J]. 气体物理, 2019, 4(2): 17-29. DONG M, ZHAO H Y. Suppression of flow separation by wall suction in supersonic boundary layers[J]. Physics of Gases, 2019, 4(2): 17-29(in Chinese).
[85] 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371(in Chinese).
[86] ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4): 767-776.
[87] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328(in Chinese).
[88] 童福林, 周桂宇, 孙东, 等. 膨胀效应对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(9): 123731. TONG F L, ZHOU G Y, SUN D, et al. Expansion effect on shock wave and turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123731(in Chinese).
[89] DAUB D, WILLEMS S, GVLHAN A. Experiments on the interaction of a fast-moving shock with an elastic panel[J]. AIAA Journal, 2016, 54(2): 670-678.
[90] WHALEN T J, SCHÖNEICH A G, LAURENCE S J, et al. Hypersonic fluid-structure interactions in compression corner shock-wave/boundary-layer interaction[J]. AIAA Journal, 2020, 58(9): 4090-4105.
[91] GAN T, WU Y, SUN Z Z, et al. Shock wave boundary layer interaction controlled by surface arc plasma actuators[J]. Physics of Fluids, 2018, 30: 055107.
[92] IWAKAWA A, SHODA T, PHAM H, et al. Suppression of low-frequency shock oscillations over boundary layers by repetitive laser pulse energy deposition[J]. Aerospace, 2016, 3(2): 13.
[93] 蔡帮煌, 宋慧敏, 郭善广, 等. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848. CAI B H, SONG H M, GUO S G, et al. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(9): 1839-1848(in Chinese). Yahui SONG, Gaoyu FAN, Lixia QU, Yuelin ZHANG, Yue XU, Shuo HAN. Progress of aircraft sonic boom flight test measurement technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626186-626186. Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. Zheng LI, Cong XU, Jian ZHANG, Mengmeng LI, Yilei MA, Guanghui BAI. Reverse jet flow control by plasma synthetic jet actuator in high speed flow field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 225-232. Shouchao HU, Yu ZHUANG, Xian LI, Tao JIANG. Hypersonic aero-heating environment research model HyHERM-I: Experiment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 233-248. SU Lingfei, HUA Yongzhao, DONG Xiwang, REN Zhang. Human-UAV swarm multi-modal intelligent interaction methods [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 727001-727001. HAN Luyang, WANG Bin, PU Liang, CHEN Qing, ZHENG Haibin. Research progress on mechanism and related problems of energy deposition drag reduction technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 26032-026032. FU Yang'aoxiao, DING Mingsong, LIU Qingzong, JIANG Tao, SHI Run, DONG Weizhong, GAO Tiesuo. Numerical study of hot jet interaction effect in divert control system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125941-125941. CHENG Jianrui, SHI Chongguang, QU Lixia, XU Yue, YOU Yancheng, ZHU Chengxiang. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125993-125993. TONG Fulin, DONG Siwei, DUAN Junyi, LI Xinliang. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125437-125437. ZHANG Haoyuan, SUN Dong, QIU Bo, ZHU Yandan, WANG Anling. Influence of turbulent kinetic energy on shock wave/boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125504-125504. ZHOU Yan, LUO Zhenbing, WANG Lin, XIA Zhixun, GAO Tianxiang, XIE Wei, DENG Xiong, PENG Wenqiang, CHENG Pan. Plasma synthetic jet actuator for flow control: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 25027-025027. WANG Hongyu, YANG Yanguang, HU Weibo, CHEN Zhi, FENG Liming, ZHOU Youtian. Experimental study on unsteadiness characteristics of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 625905-625905. SHEN Pengfei, LIU Pengxin, SUN Dong, YUAN Xianxu. Statistical characteristics of skin friction of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach 6 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 626005-626005. GANG Dundian, YI Shihe, MI Qi, NIU Haibo. Experiment on interaction between supersonic turbulent boundary layer and cylinder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 626104-626104. XIE Zhuxuan, YANG Yanguang, WANG Gang. Structure of shock-induced separation in confined flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 626042-626042.

Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China

Postal code : 100083

E-mail:hkxb@buaa.edu.cn