多核数字信号处理器(DSP)在航空、航天等领域的信号处理系统中应用较广泛,在实际工程应用时,由于JTAG接口的性能限制,存在速度慢、不稳定、难操作等问题,导致开发效率低下并严重影响项目进度。建立了一种以千兆以太网和PCIe作为加载和调试接口的多核DSP软硬件开发平台,包括标准化的硬件模块和软件开发环境,具有易重构、易扩展、不再依赖JTAG接口、兼容多个软件操作系统、资源占用低等优点。以多核DSP TMS320C 6678为例,描述了多片DSP组成的信号处理系统开发中的关键技术,包括商用标准(COTS)模块、系统架构、硬件诊断、软件加载、软件调试等。用该平台可以显著降低使用门槛,大幅度提高开发效率。

针对在蛋白质相互作用网络上的关键蛋白质识别只关注拓扑特性,蛋白质相互作用数据中存在较高比例的假阳性数据以及基于复合物信息的关键蛋白质识别算法对节点的邻域信息和复合物的挖掘对关键蛋白质的识别影响效果考虑不够全面等导致的识别准确率和特异性不高的问题,提出一种基于复合物参与度和密度的关键蛋白质预测算法PEC。首先融合GO注释信息和边聚集系数构造加权PPI网络,克服假阳性对实验结果的影响;基于蛋白质相互作用的边权重,构造相似度矩阵,设计特征值间的最大本征差值来自动确定划分数目K,同时根据加权网络中的蛋白质节点度来选取K个初始聚类中心,进而利用谱聚类结合模糊C-means聚类算法实现复合物的挖掘,提高聚类的准确率,降低数据的维数;其次基于蛋白质节点的复合物参与度以及节点邻域子图密度,设计出关键节点的关键性得分。在DIP和Krogan 2个数据集上,将PEC与
DC、BC、CC、SC、IC、PeC、WDC、LIDC、LBCC和UC 10种经典算法相比,实验结果表明,PEC算法能够识别出更多的关键蛋白质,且聚类结果的准确率和特异性较高。

目前疲劳预警算法多采用实时监测报警的方式,这在高速行驶中具有很大的安全隐患。鉴于人类疲劳状态的时序相关性,提出一种基于面部动作时空特征提取的预警算法。首先,构建加入空间变换结构的卷积神经网络,识别人脸区域,对脸部特征点进行检测标记;其次,建立时空特征提取网络,利用采集的人脸图像序列,对未来图像序列进行预测并输出;最后,在输出的图像序列中根据眼部、嘴部综合状态判断是否发出警告。实验结果表明,以15 fps的速率采集图像,预测未来2 s 30帧图像的方式下,该算法能以90%以上的准确率提前26帧(约1.5 s)预警,且提前15帧(1 s)预警的准确率达到97%。在我国高速公路平均100 km/h的车速下,相当于提前40 m预警,能进一步减少交通事故的发生。

现有的图像融合算法存在非线性操作产生的噪声干扰和空间复杂度高等问题,使得融合图像易失真和丢失信息。一些学者提出的压缩感知图像融合算法能有效改善这一问题,但大多忽略了图像矩阵的低秩性,往往会降低融合质量。由此,将压缩感知融合技术与低秩矩阵逼近方法相结合,提出基于信息论图像差与自适应加权核范数最小化的图像融合算法。该算法由3个阶段组成。首先,将2幅源图像通过小波稀疏基稀疏化,并利用结构随机矩阵压缩采样,得到测量输出矩阵。然后,将测量输出矩阵进行分块,再利用图像差融合算法得到融合后的测量输出矩阵块。最后,利用自适应加权核范数最小化优化得到的块权重,通过正交匹配追踪法重建融合图像。实验结果表明了该算法的有效性和普适性,并且在多种评价指标上优于其他融合算法。

针对传统时空上下文目标跟踪(STC)算法中目标窗口不能适应目标尺度变化,导致对目标针对性不强等问题,提出改进STC和SURF特征联合优化的目标跟踪算法(STC-SURF)。首先利用加速稳健(SURF)特征算法对相邻的2帧图像提取特征点并进行匹配,再通过随机抽样一致(RANSAC)算法消除误匹配,
提高匹配精度。进而根据2帧图像中匹配特征点的变化对目标窗口进行调整。最终对STC算法中模型的更新方式进行优化以提高跟踪结果的准确性。实验结果表明,STC-SURF算法能够适应目标尺度变化,并且其目标跟踪成功率优于TLD算法和传统STC算法的。

词义消歧是一项具有挑战性的自然语言处理难题。作为词义消歧中的一种优秀的半监督消歧算法,遗传蚁群词义消歧算法能快速进行全文词义消歧。该算法采用了一种局部上下文的图模型来表示语义关系,以此进行词义消歧。然而,在消歧过程中却丢失了全局语义信息,出现了消歧结果冲突的问题,导致算法精度降低。因此,
提出了一种基于全局领域和短期记忆因子改进的图模型来表示语义以解决这个问题。该图模型引入了全局领域信息,增强了图对全局语义信息的处理能力。同时根据人的短期记忆原理,在模型中引入了短期记忆因子,增强了语义间的线性关系,避免了消歧结果冲突对词义消歧的影响。大量实验结果表明:与经典词义消歧算法相比,所提的改进图模型提高了词义消歧的精度。

在多标记学习中,每个样本都由一个实例表示,并与多个类标记相关联。现有的多标记学习算法大多是在全局利用标记相关性,即假设所有的样本共享不同类别标记之间的正相关性。然而,在实际应用中,不同的样本共享不同的标记相关性,标记间不仅存在正相关性,而且存在相互排斥的现象,即负相关性。针对这一问题,提出了基于局部正、负成对标记相关性的k近邻多标记分类算法PNLC。首先,对多标记数据的特征向量进行预处理,分别为每类标记构造对该类标记最具有判别能力的属性特征;然后,在训练阶段,PNLC算法通过所有训练样本中各样本的每个k近邻的真实标记构建标记之间的正、负局部成对相关性矩阵;最后,在测试阶段,首先得到每个测试样例的k近邻及其对应的正、负成对标记关系,利用该标记关系计算最大后验概率对测试样例进行预测。实验结果表明,PNLC算法在yeast和image数据集上的分类准确率明显优于其他常用的多标记分类算法。
孪生支持向量机TWSVMs分类过程的计算量和样本的数量成正比,当样本个数较多时,其分类过程将会比较耗时。为了提高样本集的稀疏性,从而提高TWSVMs的分类速度,提出了一种基于AP聚类的约简孪生支持向量机快速分类算法FCTSVMs-AP。首先对原始数据集进行AP聚类操作。聚类的中心为约简后新的样本集,按照分类误差最小的原则构建优化模型,用二次规划方法求解新的决策函数的系数,并证明了当样本集压缩时,收紧新的快速决策函数和原始决策函数之间的误差等价于在样本空间对原始数据集进行AP聚类操作。在人工数据集和UCI数据集上的实验表明,保持分类精度的损失在统计意义上不明显的前提下,FCTSVMs-AP可以通过有效压缩样本数量的方式提高分类速度。