• Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
  • ImmunoBiome Inc., Pohang, 37666, Korea.
  • Institute of Convergence Science, Yonsei University, Seoul, 03722, Korea.
  • 在过去的几年中,免疫检查点抑制剂 (ICI) 大大提高了癌症患者的生存率。然而,只有少数患者对 ICI 治疗有反应(实体瘤中约为 30%),而当前 ICI 反应相关的生物标志物通常无法预测 ICI 治疗反应。在这里,我们提出了一个机器学习 (ML) 框架,该框架利用基于网络的分析来识别可以做出稳健预测的 ICI 治疗生物标志物 (NetBio)。我们整理了 700 多个 ICI 治疗的患者样本以及临床结果和转录组数据,并观察到基于 NetBio 的预测准确地预测了三种不同癌症类型(黑色素瘤、胃癌和膀胱癌)的 ICI 治疗反应。此外,基于 NetBio 的预测优于基于其他传统 ICI 治疗生物标志物的预测,例如 ICI 靶点或肿瘤微环境相关标志物。这项工作提出了一种基于网络的方法,可以有效地选择免疫治疗反应相关的生物标志物,可以为精准肿瘤学做出基于机器学习的稳健预测。

    Immune checkpoint inhibitors (ICIs) have substantially improved the survival of cancer patients over the past several years. However, only a minority of patients respond to ICI treatment (~30% in solid tumors), and current ICI-response-associated biomarkers often fail to predict the ICI treatment response. Here, we present a machine learning (ML) framework that leverages network-based analyses to identify ICI treatment biomarkers (NetBio) that can make robust predictions. We curate more than 700 ICI-treated patient samples with clinical outcomes and transcriptomic data, and observe that NetBio-based predictions accurately predict ICI treatment responses in three different cancer types—melanoma, gastric cancer, and bladder cancer. Moreover, the NetBio-based prediction is superior to predictions based on other conventional ICI treatment biomarkers, such as ICI targets or tumor microenvironment-associated markers. This work presents a network-based method to effectively select immunotherapy-response-associated biomarkers that can make robust ML-based predictions for precision oncology.