相关文章推荐
打酱油的课本  ·  C# ...·  11 月前    · 
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.

REAGENT or RESOURCE SOURCE IDENTIFIER
Software and algorithms

TensorFlow 2.3 TensorFlow https://tensorflow.google.cn/
Python 3.8 Python https://www.python.org/

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xinhua Liu ( liuxinhua19@buaa.edu.cn ).

Materials availability

This study did not generate new materials.

Method details

Differential thermal voltammetry signal analysis

The DTV method is an important tool for tracking battery health conditions, which could be utilized to evaluate the patterns of battery degradation process. It can help to extract feature variables that reflect microscopic battery degradation characteristics. The battery degradation is a complex physicochemical process. Therefore, the analysis of internal mechanism and measurement of parameters could be challenging. The change of entropy is a function of temperature, and the DTV method could provide obvious information related to entropy. Some feature variables, such as positions and heights of peak and valleys of the curve, are directly concerned with the impedance increment and nonuniform of electrode performance during battery degradation process, reflecting the phase transition characteristic. The phase transition characteristic is closely related to the battery degradation, thus providing close links between DTV features and battery degradation. The parameters of DTV methods could be calculated by differentiate the temperature of the battery surface to the terminal voltage during charging, described as follows.

D T V = d T d t / d V d t = d T d V
(Equation 16)

Where T represents the battery surface temperature, V the battery terminal voltage. That is, we could obtain DTV only by obtaining temperature and voltage data from the battery during charging or discharging.

Bayesian optimization

The Bayesian optimization method is utilized for hyperparameters search of model. As for deep-learning neural network, the hyperparameters are pre-set parameters rather than the parameter obtained through training. The hyperparameters have a great effect on the performance of neural networks. With the improvement of health prediction accuracy, the value of hyperparameters cannot be applied to different types of batteries. Reasonable selection of hyperparameters can optimize the results of network calculation. The hyperparameter value is automatically adjusted by Bayesian optimization algorithm. The optimal hyperparameter value could be computed as follows:

d = a r g m i n J ( d ) , D ( a , b ) , ( d D )
(Equation 17)

Where d represents the hyperparameter value, d∗ the optimal value and (a, b) the interval of optimization.

Dropout technique

To solve the overfitting problem, the dropout method is utilized to randomly drops neurons in the network, improving the generalization ability and training speed of model.[45] With the dropout technique, the neurons from in the neural network are randomly dropped, addressing the overfitting problem more efficiently during training. Neurons with all incoming and outgoing connections are temporarily removed from the network. The neuron is temporarily removed from the network along with all its incoming and outgoing connections. Each neuron is retained according to a specific fixed probability p. The dropout layer is placed between the two fully connected layers. Consequently, a “thinned” network from origin neural network is obtained with dropout technique applied. The new network consists of all the neurons that survive in dropout process, being less sensitive to the specific weights of neurons.

RMSprop algorithm

The RMSprop technique is utilized to train the deep-learning neural network. Compared to other optimization methods, the RMSprop technique further improves convergence speed and convergence character. The update of the network parameters weight W and bias b can be described as:

J ( W , b ) = 1 m j = 1 m ( y ˆ j y i ) 2
(Equation 18)
S 1 t = β 1 S 1 t 1 + ( 1 β 1 ) 2 J t 1 W 2
(Equation 19)
S 2 t = β 2 S 2 t 1 + ( 1 β 2 ) 2 J t 1 b 2
(Equation 20)
W t = W t 1 α J t 1 W S 1 t
(Equation 21)
b t = b t 1 α J t 1 b S 2 t
(Equation 22)

where J ( · ) represents the cost function of the LSTM NN, t the number of training iteration, y the real value, y ˆ the predicted value respectively, β the update coefficient of S , and α the learning rate.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52102470).

Author contributions

Conceived and designed the experiments and analyzed data: L.Z., Z.Z, and X.L.; Performed most of experiments: L.Z., W.W., and H.Y.; Writing – Original Draft: L.Z.; Writing – Review & Editing: X.Y., F.L., and S.L.; Conceptualization, Methodology: S.Y., Z.Z., and X.L.; All authors contributed to and approved the paper.

Declaration of interests

The authors declare no competing interests.

Notes

Published: December 22, 2022

Data and code availability

No additional data was used. This paper does not report original code. Any additional information for reanalyzing this work is available from the lead contact upon request.

References

1. Zhang L.-S., Gao X.-L., Liu X.-H., Zhang Z.-J., Cao R., Cheng H.-C., Wang M.-Y., Yan X.-Y., Yang S.-C. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 2022; 41 :1477–1489. doi: 10.1007/s12598-021-01925-8. [ CrossRef ] [ Google Scholar ]
2. Lu Q., Jie Y., Meng X., Omar A., Mikhailova D., Cao R., Jiao S., Lu Y., Xu Y. Carbon materials for stable Li metal anodes: challenges, solutions, and outlook. Carbon Energy. 2021; 3 :957–975. doi: 10.1002/cey2.147. [ CrossRef ] [ Google Scholar ]
3. Chen X.R., Zhao B.C., Yan C., Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv. Mater. 2021; 33 :e2004128. doi: 10.1002/adma.202004128. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Cao R., Cheng H., Jia X., Gao X., Zhang Z., Wang M., Li S., Zhang C., Ma B., Liu X., Yang S. Non-invasive characteristic curve analysis of lithium-ion batteries enabling degradation analysis and data-driven model construction: a review. Automot. Innov. 2022; 5 :146–163. doi: 10.1007/s42154-022-00181-5. [ CrossRef ] [ Google Scholar ]
5. Makwarimba C.P., Tang M., Peng Y., Lu S., Zheng L., Zhao Z., Zhen A.G. Assessment of recycling methods and processes for lithium-ion batteries. iScience. 2022; 25 :104321. doi: 10.1016/j.isci.2022.104321. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Liu Y., Zhang R., Wang J., Wang Y. Current and future lithium-ion battery manufacturing. iScience. 2021; 24 :102332. doi: 10.1016/j.isci.2021.102332. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Meng X., Xu Y., Cao H., Lin X., Ning P., Zhang Y., Garcia Y.G., Sun Z. Internal failure of anode materials for lithium batteries — a critical review. Green Energy Environ. 2020; 5 :22–36. doi: 10.1016/j.gee.2019.10.003. [ CrossRef ] [ Google Scholar ]
8. Elattar H.M., Elminir H.K., Riad A.M. Prognostics: a literature review. Complex Intell. Syst. 2016; 2 :125–154. doi: 10.1007/s40747-016-0019-3. [ CrossRef ] [ Google Scholar ]
9. Xiong R., Ma S., Li H., Sun F., Li J. Toward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuit. iScience. 2020; 23 :101010–101018. doi: 10.1016/j.isci.2020.101010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Yang S., He R., Zhang Z., Cao Y., Gao X., Liu X. CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020; 3 :27–41. doi: 10.1016/j.matt.2020.04.015. [ CrossRef ] [ Google Scholar ]
11. Tao H., Lian C., Liu H. Multiscale modeling of electrolytes in porous electrode: from equilibrium structure to non-equilibrium transport. Green Energy Environ. 2020; 5 :303–321. doi: 10.1016/j.gee.2020.06.020. [ CrossRef ] [ Google Scholar ]
12. Yang Z., Patil D., Fahimi B. Online estimation of capacity fade and power fade of lithium-ion batteries based on input-output response technique. IEEE Trans. Transp. Electrific. 2018; 4 :147–156. doi: 10.1109/TTE.2017.2775801. [ CrossRef ] [ Google Scholar ]
13. Li Y., Liu K., Foley A.M., Zülke A., Berecibar M., Nanini-Maury E., Van Mierlo J., Hoster H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review. Renew. Sustain. Energy Rev. 2019; 113 :109254. doi: 10.1016/j.rser.2019.109254. [ CrossRef ] [ Google Scholar ]
14. Lin C., Kong W., Tian Y., Wang W., Zhao M. Heating lithium-ion batteries at low temperatures for onboard applications: recent progress, challenges and prospects. Automot. Innov. 2022; 5 :3–17. doi: 10.1007/s42154-021-00166-w. [ CrossRef ] [ Google Scholar ]
15. Feng Y., Xue C., Han Q.L., Han F., Du J. Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers. IEEE Trans. Ind. Electron. 2020; 67 :4013–4023. doi: 10.1109/TIE.2019.2916389. [ CrossRef ] [ Google Scholar ]
16. Meng J., Cai L., Stroe D.I., Ma J., Luo G., Teodorescu R. An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system. Energy. 2020; 206 :118140. doi: 10.1016/j.energy.2020.118140. [ CrossRef ] [ Google Scholar ]
17. Keil P., Schuster S.F., Wilhelm J., Travi J., Hauser A., Karl R.C., Jossen A. Calendar aging of lithium-ion batteries. J. Electrochem. Soc. 2016; 163 :A1872–A1880. doi: 10.1149/2.0411609jes. [ CrossRef ] [ Google Scholar ]
18. Cai Y., Yang L., Deng Z., Zhao X., Deng H. Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine. Energy. 2018; 147 :621–635. doi: 10.1016/j.energy.2018.01.001. [ CrossRef ] [ Google Scholar ]
19. Zhou C.C., Su Z., Gao X.L., Cao R., Yang S.C., Liu X.H. Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Met. 2022; 41 :14–20. doi: 10.1007/s12598-021-01785-2. [ CrossRef ] [ Google Scholar ]
20. Jokar A., Rajabloo B., Désilets M., Lacroix M. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries. J. Power Sources. 2016; 327 :44–55. doi: 10.1016/j.jpowsour.2016.07.036. [ CrossRef ] [ Google Scholar ]
21. Li J., Adewuyi K., Lotfi N., Landers R.G., Park J. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation. Appl. Energy. 2018; 212 :1178–1190. doi: 10.1016/j.apenergy.2018.01.011. [ CrossRef ] [ Google Scholar ]
22. Baghdadi I., Briat O., Delétage J.Y., Gyan P., Vinassa J.M. Lithium battery aging model based on Dakin’s degradation approach. J. Power Sources. 2016; 325 :273–285. doi: 10.1016/j.jpowsour.2016.06.036. [ CrossRef ] [ Google Scholar ]
23. Wang J., Purewal J., Liu P., Hicks-Garner J., Soukazian S., Sherman E., Sorenson A., Vu L., Tataria H., Verbrugge M.W. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources. 2014; 269 :937–948. doi: 10.1016/j.jpowsour.2014.07.030. [ CrossRef ] [ Google Scholar ]
24. Gopaluni R.B., Braatz R.D. State of charge estimation in Li-ion batteries using an isothermal pseudo two-dimensional model. IFAC Proc. Vol. 2013; 46 :135–140. doi: 10.3182/20131218-3-IN-2045.00163. [ CrossRef ] [ Google Scholar ]
25. Ecker M., Gerschler J.B., Vogel J., Käbitz S., Hust F., Dechent P., Sauer D.U. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. J. Power Sources. 2012; 215 :248–257. doi: 10.1016/j.jpowsour.2012.05.012. [ CrossRef ] [ Google Scholar ]
26. Tian J., Xu R., Wang Y., Chen Z. Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries. Energy. 2021; 221 :119682. doi: 10.1016/j.energy.2020.119682. [ CrossRef ] [ Google Scholar ]
27. Liu X., Zhang L., Yu H., Wang J., Li J., Yang K., Zhao Y., Wang H., Wu B., Brandon N.P., et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 2022; 12 :2200889. doi: 10.1002/aenm.202200889. [ CrossRef ] [ Google Scholar ]
28. Hu X., Jiang J., Cao D., Egardt B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Trans. Ind. Electron. 2015; 63 :1–2656. doi: 10.1109/TIE.2015.2461523. [ CrossRef ] [ Google Scholar ]
29. Zhang S., Guo X., Zhang X. Multi-objective decision analysis for data-driven based estimation of battery states: a case study of remaining useful life estimation. Int. J. Hydrogen Energy. 2020; 45 :14156–14173. doi: 10.1016/j.ijhydene.2020.03.100. [ CrossRef ] [ Google Scholar ]
30. Wu L., Fu X., Guan Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Appl. Sci. 2016; 6 :166. doi: 10.3390/app6060166. [ CrossRef ] [ Google Scholar ]
31. Zhang Y., Xiong R., He H., Pecht M.G. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation. IEEE Trans. Ind. Electron. 2019; 66 :1585–1597. doi: 10.1109/TIE.2018.2808918. [ CrossRef ] [ Google Scholar ]
32. Ding W.L., Lu Y., Peng X.L., Dong H., Chi W.J., Yuan X., Sun Z.Z., He H. Accelerating evaluation of the mobility of ionic liquid-modulated PEDOT flexible electronics using machine learning. J. Mater. Chem. 2021; 9 :25547–25557. doi: 10.1039/d1ta08013j. [ CrossRef ] [ Google Scholar ]
33. Huang H., Meng J., Wang Y., Cai L., Peng J., Wu J., Xiao Q., Liu T., Teodorescu R. An enhanced data-driven model for lithium-ion battery state-of-health estimation with optimized features and prior knowledge. Automot. Innov. 2022; 5 :134–145. doi: 10.1007/s42154-022-00175-3. [ CrossRef ] [ Google Scholar ]
34. Fei Z., Yang F., Tsui K.L., Li L., Zhang Z. Early prediction of battery lifetime via a machine learning based framework. Energy. 2021; 225 :120205. doi: 10.1016/j.energy.2021.120205. [ CrossRef ] [ Google Scholar ]
35. Ma G., Zhang Y., Cheng C., Zhou B., Hu P., Yuan Y. Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl. Energy. 2019; 253 :113626. doi: 10.1016/j.apenergy.2019.113626. [ CrossRef ] [ Google Scholar ]
36. Patil M.A., Tagade P., Hariharan K.S., Kolake S.M., Song T., Yeo T., Doo S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy. 2015; 159 :285–297. doi: 10.1016/j.apenergy.2015.08.119. [ CrossRef ] [ Google Scholar ]
37. Liu J., Chen Z. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model. IEEE Access. 2019; 7 :39474–39484. doi: 10.1109/ACCESS.2019.2905740. [ CrossRef ] [ Google Scholar ]
38. Feng X., Merla Y., Weng C., Ouyang M., He X., Liaw B.Y., Santhanagopalan S., Li X., Liu P., Lu L., et al. A reliable approach of differentiating discrete sampled-data for battery diagnosis. eTransportation. 2020; 3 :100051. doi: 10.1016/j.etran.2020.100051. [ CrossRef ] [ Google Scholar ]
39. Yang H., Wang P., An Y., Shi C., Sun X., Wang K., Zhang X., Wei T., Ma Y. Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors. eTransportation. 2020; 5 :100078. doi: 10.1016/j.etran.2020.100078. [ CrossRef ] [ Google Scholar ]
40. Su L., Wu M., Li Z., Zhang J. Cycle life prediction of lithium-ion batteries based on data-driven methods. eTransportation. 2021; 10 :100137. doi: 10.1016/j.etran.2021.100137. [ CrossRef ] [ Google Scholar ]
41. Wu B., Yufit V., Merla Y., Martinez-Botas R.F., Brandon N.P., Offer G.J. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries. J. Power Sources. 2015; 273 :495–501. doi: 10.1016/j.jpowsour.2014.09.127. [ CrossRef ] [ Google Scholar ]
42. Birkl C. 2017. Oxford Battery Degradation Dataset 1. VO - RT - Aggregated Database. OP - [ Google Scholar ]
43. Birkl C. 2017. Diagnosis and Prognosis of Degradation in Lithium-Ion Batteries. VO - RT - Thesis. OP - [ Google Scholar ]

Articles from iScience are provided here courtesy of Elsevier