The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more about our disclaimer.
Se Pu.
2022 Jul 8; 40(7): 625–633.
Language:
Chinese
|
English
分散固相萃取-超高效液相色谱-串联质谱法测定水产品中5种硝基咪唑类和6种苯二氮卓类药物
Determination of five nitroimidazoles and six benzodiazepines in aquatic products using ultra-high performance liquid chromatography-tandem mass spectrometry coupled with dispersive solid-phase extraction
,
,
,
,
,
and
Xiao YANG
1.湖南省水产科学研究所, 湖南 长沙 410153
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
Yiwen WAN
1.湖南省水产科学研究所, 湖南 长沙 410153
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
Huawei HUANG
1.湖南省水产科学研究所, 湖南 长沙 410153
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
Wenwen SUO
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
Wei XIAO
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
Xiaoling LI
1.湖南省水产科学研究所, 湖南 长沙 410153
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
1.湖南省水产科学研究所, 湖南 长沙 410153
2.农业农村部渔业产品质量监督检验测试中心(长沙), 湖南 长沙 410153
LOQ/
(μg/kg)
Standard curveR
2
Standard curveR
2
Standard curveR
2
Metronidazoley=1.64×10
5
x+4.51×10
4
0.9946y=1.77×10
5
x+3.52×10
4
0.9971y=2.17×10
5
x+4.96×10
4
0.99560.20.5Dimetridazoley=3.14×10
5
x+2.77×10
4
0.9973y=3.18×10
5
x+4.76×10
4
0.9966y=2.71×10
5
x+3.75×10
4
0.99650.20.5Ronidazoley=2.06×10
5
x+1.94×10
4
0.9964y=1.82×10
5
x+1.06×10
4
0.9980y=1.75×10
5
x+2.55×10
4
0.99630.20.5MNZOHy=7.97×10
4
x+3.10×10
3
0.9974y=7.60×10
4
x+2.14×10
3
0.9974y=7.76×10
4
x+6.57×10
3
0.99740.51.0HMMNIy=1.53×10
5
x+7.34×10
3
0.9982y=1.36×10
5
x+5.02×10
3
0.9963y=1.41×10
5
x+8.30×10
3
0.99680.51.0Diazepamy=2.76×10
5
x+2.58×10
4
0.9979y=2.84×10
5
x+1.75×10
4
0.9977y=2.70×10
5
x+4.36×10
4
0.99810.20.5Nitrazepamy=3.33×10
5
x+7.22×10
4
0.9977y=3.26×10
5
x+5.07×10
3
0.9981y=3.20×10
5
x+7.58×10
4
0.99780.20.5Flurazepamy=1.81×10
6
x+1.44×10
5
0.9971y=1.48×10
6
x+2.03×10
5
0.9982y=1.55×10
6
x+1.80×10
5
0.99550.20.5Oxazepamy=3.43×10
5
x+4.60×10
4
0.9993y=3.53×10
5
x+3.20×10
4
0.9992y=3.21×10
5
x+2.69×10
4
0.99710.20.5Clonazepamy=2.91×10
5
x+2.48×10
4
0.9971y=3.05×10
5
x+1.76×10
4
0.9990y=3.00×10
5
x+3.22×10
4
0.99850.31.0Chlordiazepoxidey=3.86×10
5
x+4.67×10
4
0.9955y=3.02×10
5
x+2.69×10
4
0.9969y=2.81×10
5
x+3.58×10
4
0.99760.31.0
由
可知,5种硝基咪唑类和6种苯二氮卓类药物在0.5~20 μg/L范围内线性关系良好,灵敏度较高。
2.4.2 回收率和精密度
选取阴性草鱼、对虾和大黄鱼作为空白基质样品,设定3个添加水平,每个添加水平做6个平行样,按本方法进行回收率和精密度试验,结果见
。由
可知,各基质中5种硝基咪唑类和6种苯二氮卓类药物的回收率为73.2%~110.6%,相对标准偏差为3.5%~14.3%;表明该方法的回收率和重复性好,满足日常检测要求。
表 4
不同基质中5种硝基咪唑类和6种苯二氮卓类药物的回收率和精密度(
n
=6)
Recoveries and precisions of the five nitroimidazoles and six benzodiazepines in different matrices (
n
=6)
Compound
|
Spiked/(μg/kg)
|
Grass carp
|
|
Large yellow croaker
|
|
Prawn
|
Recovery/%
|
RSD/%
|
Recovery/%
|
RSD/%
|
Recovery/%
|
RSD/%
|
Metronidazole
|
0.5
|
85.1
|
3.8
|
|
81.2
|
6.2
|
|
81.3
|
4.9
|
|
1.0
|
92.3
|
4.7
|
|
90.7
|
5.0
|
|
84.6
|
5.4
|
|
5.0
|
88.0
|
3.5
|
|
85.7
|
4.5
|
|
87.0
|
7.1
|
Dimetridazole
|
0.5
|
82.3
|
4.0
|
|
85.9
|
4.9
|
|
78.8
|
6.6
|
|
1.0
|
79.6
|
3.8
|
|
82.0
|
9.0
|
|
85.1
|
6.4
|
|
5.0
|
89.8
|
5.2
|
|
90.1
|
3.8
|
|
105.3
|
6.1
|
Ronidazole
|
0.5
|
79.4
|
3.6
|
|
80.2
|
3.8
|
|
86.6
|
4.7
|
|
1.0
|
88.3
|
4.9
|
|
83.5
|
5.2
|
|
80.3
|
4.1
|
|
5.0
|
101.5
|
3.7
|
|
91.7
|
8.0
|
|
93.4
|
10.3
|
MNZOH
|
1.0
|
88.8
|
7.2
|
|
101.2
|
10.6
|
|
83.6
|
6.9
|
|
2.0
|
94.6
|
5.3
|
|
105.8
|
5.4
|
|
95.5
|
6.7
|
|
10.0
|
102.0
|
3.9
|
|
103.4
|
4.8
|
|
94.1
|
5.1
|
HMMNI
|
1.0
|
88.2
|
6.1
|
|
93.5
|
9.2
|
|
90.1
|
7.3
|
|
2.0
|
93.5
|
8.0
|
|
102.2
|
9.6
|
|
101.4
|
12.1
|
|
10.0
|
106.6
|
3.3
|
|
110.6
|
5.1
|
|
103.5
|
5.4
|
Diazepam
|
0.5
|
83.3
|
5.6
|
|
85.5
|
5.4
|
|
80.0
|
6.1
|
|
1.0
|
92.7
|
3.8
|
|
86.1
|
4.6
|
|
84.6
|
4.0
|
|
5.0
|
93.8
|
3.7
|
|
101.2
|
6.2
|
|
92.3
|
4.6
|
Nitrazepam
|
0.5
|
90.7
|
4.4
|
|
86.1
|
8.1
|
|
82.9
|
7.3
|
|
1.0
|
87.6
|
4.5
|
|
90.5
|
5.2
|
|
85.4
|
6.6
|
|
5.0
|
89.0
|
5.7
|
|
92.2
|
7.8
|
|
84.1
|
9.4
|
Flurazepam
|
0.5
|
84.6
|
8.8
|
|
79.4
|
6.4
|
|
80.5
|
12.5
|
|
1.0
|
85.3
|
4.2
|
|
81.6
|
3.9
|
|
75.6
|
6.1
|
|
5.0
|
92.7
|
6.1
|
|
88.1
|
9.8
|
|
82.8
|
5.0
|
Oxazepam
|
0.5
|
87.2
|
6.3
|
|
81.3
|
4.6
|
|
84.6
|
10.7
|
|
1.0
|
95.0
|
5.9
|
|
94.6
|
8.2
|
|
101.3
|
4.8
|
|
5.0
|
105.8
|
2.6
|
|
108.2
|
5.1
|
|
110.5
|
3.7
|
Clonazepam
|
1.0
|
96.1
|
6.2
|
|
103.1
|
5.1
|
|
102.6
|
4.5
|
|
2.0
|
85.8
|
5.1
|
|
88.9
|
6.9
|
|
81.7
|
8.7
|
|
10.0
|
102.2
|
4.8
|
|
106.2
|
5.9
|
|
97.4
|
9.6
|
Chlordiazepoxide
|
1.0
|
80.6
|
9.1
|
|
73.2
|
14.3
|
|
78.5
|
11.1
|
|
2.0
|
81.3
|
6.4
|
|
84.1
|
7.1
|
|
82.6
|
5.8
|
|
10.0
|
86.4
|
4.7
|
|
82.5
|
5.2
|
|
84.3
|
7.3
|
2.5 实际样品检测
采用已经建立的方法对市售鲫鱼、鳊鱼、鲤鱼、草鱼、鲢鱼、乌鳢、对虾、大黄鱼等30份样品进行分析检测。检测结果显示,所有样品均未检出硝基咪唑类和苯二氮卓类药物。
3 结论
本文对仪器检测参数和样品前处理条件进行了优化,采用基质匹配标准曲线外标法定量,建立了一种分散固相萃取-超高效液相色谱-串联质谱法测定水产品中5种硝基咪唑类和6种苯二氮卓类药物残留的分析方法。该方法灵敏度高,回收率好,简单、高效、快速、成本低,实现了对水产品中多种硝基咪唑类和苯二氮卓类药物的同时分析检测,为检测水产品中硝基咪唑类和苯二氮卓类药物残留提供了技术支持。
参考文献:
[1]
Mahugo-Santana C,
Sosa-Ferrera Z,
Torres-Padrón M,
et al.
Anal Chim Acta
,
2010,
665
(
2
): 113
[
PubMed
]
[
Google Scholar
]
[2]
Guo J,
Ding L P,
Wu W F,
et al.
Journal of Instrumental Analysis
,
2015,
34
(
1
): 28
[
Google Scholar
]
et al.
分析测试学报
,
2015,
34
(
1
): 28
[
Google Scholar
]
[3]
Granja R H M M,
Nino A M M,
Reche K V G,
et al.
Food Additives & Contaminants: Part A
,
2013,
30
(
6
): 970
[
PubMed
]
[
Google Scholar
]
[4]
Zhu S S,
Wu P,
Xu S S,
et al.
Science and Technology of Food Industry
,
2020,
41
(
22
): 326
[
Google Scholar
]
et al.
食品工业科技
,
2020,
41
(
22
): 326
[
Google Scholar
]
[5]
European Commission.
(2010).
Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin
.
Official Journal of the European Union
,
L15
(
2377
): 1
[
Google Scholar
]
[6]
Yan L J,
Zhang F,
Wu M,
et al.
Journal of Instrumental Analysis
,
2011,
30
(
11
): 1301
[
Google Scholar
]
et al.
分析测试学报
,
2011,
30
(
11
): 1301
[
Google Scholar
]
[8]
Zhang C,
Pan J R,
Shuai R Q,
et al.
Journal of Nuclear Agricultural Sciences
,
2016,
30
(
2
): 323
[
Google Scholar
]
et al.
核农学报
,
2016,
30
(
2
): 323
[
Google Scholar
]
[9]
Wang J,
Wang Y L,
Pan Y H,
et al.
Food Anal Methods
,
2016,
9
: 3407
[
Google Scholar
]
[10]
He D,
Li X Y,
Xian Y P,
et al.
Journal of Instrumental Analysis
,
2015,
34
(
8
): 911
[
Google Scholar
]
et al.
分析测试学报
,
2015,
34
(
8
): 911
[
Google Scholar
]
[11]
Liu J L,
Gu J,
Chen L Q,
et al.
Journal of Forensic Medicine
,
2021,
37
(
1
): 26
[
Google Scholar
]
et al.
法医学杂志
,
2021,
37
(
1
): 26
[
Google Scholar
]
[12]
Piergiovanni M,
Cappiello A,
Famiglini G,
et al.
J Pharmaceut Biomed
,
2018,
154
: 492
[
PubMed
]
[
Google Scholar
]
[13]
Wang Y,
Zheng C Y,
He F,
et al.
Food Science
,
2011,
32
(
20
): 197
[
Google Scholar
]
et al.
食品科学
,
2011,
32
(
20
): 197
[
Google Scholar
]
[15]
Gadaj A,
di Lullo V,
Cantwell H,
et al.
J Chromatogr B
,
2014,
960
: 105
[
PubMed
]
[
Google Scholar
]
[16]
Hernández-Mesa M,
Cruces-Blanco C,
García-Campaña A M.
Food Chem
,
2018,
252
: 294
[
PubMed
]
[
Google Scholar
]
[17]
Yu H J,
Qian B L,
Huang D M,
et al.
Chinese Fishery Quality and Standards
,
2011(
1
): 54
[
Google Scholar
]
et al.
中国渔业质量与标准
,
2011(
1
): 54
Su S F,
Sun L Z,
Xue X,
et al.
Chinese Journal of Chromatography
,
2020,
38
(
7
): 791
[
PubMed
]
[
Google Scholar
]
et al.
2020,
38
(
7
): 791
[
Google Scholar
]
[19]
Racamonde I,
Rodil R,
Quintana J B,
et al.
J Chromatogr A
,
2014,
1352
: 69
[
PubMed
]
[
Google Scholar
]
[20]
He L J,
Wang D N,
Zhang Y M,
et al.
Journal of Nuclear Agricultural Sciences
,
2021,
35
(
8
): 1865
[
Google Scholar
]
et al.
核农学报
,
2021,
35
(
8
): 1865
[
Google Scholar
]
[21]
Li J,
Sun L,
Wang H Q,
et al.
Journal of Instrumental Analysis
,
2017,
36
(
11
): 1357
[
Google Scholar
]
et al.
分析测试学报
,
2017,
36
(
11
): 1357
[
Google Scholar
]
[22]
He X M,
Yu P F,
Liu Q X,
et al.
Science and Technology of Food Industry
,
2020,
41
(
24
): 203
[
Google Scholar
]
et al.
食品工业科技
,
2020,
41
(
24
): 203
[
Google Scholar
]
[23]
Yang X,
Huang H W,
Wu Y A,
et al.
Chinese Journal of Chromatography
,
2019,
37
(
5
): 505
[
PubMed
]
[
Google Scholar
]
et al.
2019,
37
(
5
): 505
[
Google Scholar
]
[25]
Zou Y,
Shao L Z,
Chen S M,
et al.
Chinese Journal of Chromatography
,
2017,
35
(
8
): 801
[
PubMed
]
[
Google Scholar
]
et al.
2017,
35
(
8
): 801
[
Google Scholar
]
[26]
Mitrowska K,
Posyniak A,
Zmudzki J.
Talanta
,
2010,
81
(
4/5
): 1273
[
PubMed
]
[
Google Scholar
]
[27]
Zhang H W,
Jian H M,
Lin L M,
et al.
Journal of Instrumental Analysis
,
2012,
31
(
7
): 763
[
Google Scholar
]
et al.
分析测试学报
,
2012,
31
(
7
): 763
[
Google Scholar
]
[30]
Zhao L M,
Lucas D,
Long D,
et al.
J Chromatogr A
,
2018,
1549
: 14
[
PubMed
]
[
Google Scholar
]
[31]
Bonfiglio R,
King R C,
Olah T V,
et al.
Rapid Commun Mass Spectrom
,
1999,
13
(
12
): 1175
[
PubMed
]
[
Google Scholar
]
[32]
Zhang Y,
Song Y Y,
Song W Y,
et al.
Chinese Journal of New Drugs
,
2016,
25
(
11
): 1241
[
Google Scholar
]
et al.
中国新药杂志
,
2016,
25
(
11
): 1241
[
Google Scholar
]
[34]
Antignac J P,
Wasch K D,
Monteau F,
et al.
Anal Chim Acta
,
2005,
529
(
1/2
): 129
[
Google Scholar
]
[35]
Mallet C R,
Lu Z L,
Mazzeo J R.
Rapid Commun Mass Spectrom
,
2010,
18
(
1
): 49
[
PubMed
]
[
Google Scholar
]
[36]
Zhou Y R,
Li D N,
Wu J P,
et al.
Journal of Instrumental Analysis
,
2017,
36
(
8
): 1010
[
Google Scholar
]
et al.
分析测试学报
,
2017,
36
(
8
): 1010
[
Google Scholar
]
Articles from
Chinese Journal of Chromatography
are provided here courtesy of
Editorial Office of Chinese Journal of Chromatography