1.
Davidson EH, et al. A genomic regulatory network for development.
Science.
2002;
295
:1669–1678. doi: 10.1126/science.1069883.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Janssens J, et al. Decoding gene regulation in the fly brain.
Nature.
2022;
601
:630–636. doi: 10.1038/s41586-021-04262-z.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Long HK, Prescott SL, Wysocka J. Ever-changing landscapes: transcriptional enhancers in development and evolution.
Cell.
2016;
167
:1170–1187. doi: 10.1016/j.cell.2016.09.018.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Erwin DH. The origin of animal body plans: a view from fossil evidence and the regulatory genome.
Development.
2020;
147
:dev182899. doi: 10.1242/dev.182899.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Rickels R, Shilatifard A. Enhancer logic and mechanics in development and disease.
Trends Cell Biol.
2018;
28
:608–630. doi: 10.1016/j.tcb.2018.04.003.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues.
Nat. Biotechnol.
2021;
39
:825–835. doi: 10.1038/s41587-021-00869-9.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Bartosovic M, Castelo-Branco G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag.
Nat. Biotechnol.
2022 doi: 10.1038/s41587-022-01535-4.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Stuart T, et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution.
Nat. Biotechnol.
2022 doi: 10.1038/s41587-022-01588-5.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
van Steensel B, Delrow J, Henikoff S. Chromatin profiling using targeted DNA adenine methyltransferase.
Nat. Genet.
2001;
27
:304–308. doi: 10.1038/85871.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Tang JLY, et al. NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the
Drosophila
central brain and visual system.
Dev. Cell.
2022;
57
:1193–1207.e7. doi: 10.1016/j.devcel.2022.04.008.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Van de Sande B, et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis.
Nat. Protoc.
2020;
15
:2247–2276. doi: 10.1038/s41596-020-0336-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations.
Nat. Genet.
51
, 1664–1669 (2019).
[
PMC free article
]
[
PubMed
]
14.
Bravo González‐Blas C, et al. Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics.
Mol. Syst. Biol.
2020;
16
:e9438. doi: 10.15252/msb.20209438.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Argelaguet, R. et al. Decoding gene regulation in the mouse embryo using single-cell multi-omics. Preprint at
bioRxiv
10.1101/2022.06.15.496239 (2022).
16.
Bravo González-Blas C, et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data.
Nat. Methods.
2019;
16
:397–400. doi: 10.1038/s41592-019-0367-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Janky R, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
PLoS Comput. Biol.
2014;
10
:e1003731. doi: 10.1371/journal.pcbi.1003731.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Imrichová H, Hulselmans G, Kalender Atak Z, Potier D, Aerts S. i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly.
Nucleic Acids Res.
2015;
43
:W57–W64. doi: 10.1093/nar/gkv395.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Verfaillie A, Imrichova H, Janky R, Aerts S. iRegulon and i‐cisTarget: reconstructing regulatory networks using motif and track enrichment.
Curr. Protoc. Bioinforma.
2015;
52
:2.16.1–2.16.39. doi: 10.1002/0471250953.bi0216s52.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Heinz S, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.
Mol. Cell.
2010;
38
:576–589. doi: 10.1016/j.molcel.2010.05.004.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Moerman T, et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
Bioinformatics.
2019;
35
:2159–2161. doi: 10.1093/bioinformatics/bty916.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Rothenberg EV. Transcriptional control of early T and B cell developmental choices.
Annu. Rev. Immunol.
2014;
32
:283–321. doi: 10.1146/annurev-immunol-032712-100024.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Hodson DJ, et al. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.
Proc. Natl Acad. Sci. USA.
2016;
113
:E2039–E2046. doi: 10.1073/pnas.1600557113.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Wang D, Malarkannan S. Transcriptional regulation of natural killer cell development and functions.
Cancers.
2020;
12
:1591. doi: 10.3390/cancers12061591.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
Pundhir S, et al. Enhancer and transcription factor dynamics during myeloid differentiation reveal an early differentiation block in cebpa null progenitors.
Cell Rep.
2018;
23
:2744–2757. doi: 10.1016/j.celrep.2018.05.012.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
Luo Y, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal.
Nucleic Acids Res.
2020;
48
:D882–D889. doi: 10.1093/nar/gkz1062.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
Kamimoto K, et al. Dissecting cell identity via network inference and in silico gene perturbation.
Nature.
2023;
614
:742–751. doi: 10.1038/s41586-022-05688-9.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human brain organoids.
Nature
10.1038/s41586-022-05279-8 (2022).
[
PMC free article
]
[
PubMed
]
34.
Kamal, A. et al. GRaNIE and GRaNPA: inference and evaluation of enhancer‐mediated gene regulatory networks.
Mol. Syst. Biol
. 10.15252/msb.202311627 (2023).
[
PMC free article
]
[
PubMed
]
35.
Puig RR, Boddie P, Khan A, Castro-Mondragon JA, Mathelier A. UniBind: maps of high-confidence direct TF–DNA interactions across nine species.
BMC Genom.
2021;
22
:482. doi: 10.1186/s12864-021-07760-6.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
Lemma RB, et al. Chromatin occupancy and target genes of the haematopoietic master transcription factor MYB.
Sci. Rep.
2021;
11
:9008. doi: 10.1038/s41598-021-88516-w.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
Inoue A, et al. Elucidation of the role of LMO2 in human erythroid cells.
Exp. Hematol.
2013;
41
:1062–1076. doi: 10.1016/j.exphem.2013.09.003.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Smith RP, et al. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model.
Nat. Genet.
2013;
45
:1021–1028. doi: 10.1038/ng.2713.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
Holding AN, et al. VULCAN integrates ChIP-seq with patient-derived co-expression networks to identify GRHL2 as a key co-regulator of ERa at enhancers in breast cancer.
Genome Biol.
2019;
20
:91. doi: 10.1186/s13059-019-1698-z.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
Avsec Ž, et al. Effective gene expression prediction from sequence by integrating long-range interactions.
Nat. Methods.
2021;
18
:1196–1203. doi: 10.1038/s41592-021-01252-x.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
The ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes.
Nature
583
, 699–710 (2020).
[
PMC free article
]
[
PubMed
]
44.
Granja JM, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
Nat. Genet.
2021;
53
:403–411. doi: 10.1038/s41588-021-00790-6.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. Single-cell chromatin state analysis with Signac.
Nat. Methods.
2021;
18
:15. doi: 10.1038/s41592-021-01282-5.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
Aerts S, et al. Gene prioritization through genomic data fusion.
Nat. Biotechnol.
2006;
24
:537–544. doi: 10.1038/nbt1203.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
Hoek KS, et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature.
Pigment Cell Res.
2006;
19
:290–302. doi: 10.1111/j.1600-0749.2006.00322.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
48.
Wouters J, et al. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma.
Nat. Cell Biol.
2020;
22
:986–998. doi: 10.1038/s41556-020-0547-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
49.
Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data.
Nat. Methods.
2020;
17
:147–154. doi: 10.1038/s41592-019-0690-6.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
Verfaillie A, et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state.
Nat. Commun.
2015;
6
:6683. doi: 10.1038/ncomms7683.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
Caramel J, et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma.
Cancer Cell.
2013;
24
:466–480. doi: 10.1016/j.ccr.2013.08.018.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
52.
Hoek KS, Goding CR. Cancer stem cells versus phenotype-switching in melanoma: phenotype-switching in melanoma.
Pigment Cell Melanoma Res.
2010;
23
:746–759. doi: 10.1111/j.1755-148X.2010.00757.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
53.
Yang H, Fu J, Yao L, Hou A, Xue X. Runx3 is a key modulator during the epithelial-mesenchymal transition of alveolar type II cells in animal models of BPD.
Int. J. Mol. Med.
2017;
40
:1466–1476. doi: 10.3892/ijmm.2017.3135.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
55.
Zhang, P., Sun, Y. & Ma, L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance.
Cell Cycle
14
, 481–487 (2015).
[
PMC free article
]
[
PubMed
]
56.
Tiwari N, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming.
Cancer Cell.
2013;
23
:768–783. doi: 10.1016/j.ccr.2013.04.020.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
57.
Meng F, Li J, Yang X, Yuan X, Tang X. Role of Smad3 signaling in the epithelial‑mesenchymal transition of the lens epithelium following injury.
Int. J. Mol. Med.
2018 doi: 10.3892/ijmm.2018.3662.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
59.
BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex.
Nature
598
, 86–102 (2021).
[
PMC free article
]
[
PubMed
]
60.
Bakken TE, et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse.
Nature.
2021;
598
:111–119. doi: 10.1038/s41586-021-03465-8.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
61.
Stergachis AB, et al. Conservation of trans-acting circuitry during mammalian regulatory evolution.
Nature.
2014;
515
:365–370. doi: 10.1038/nature13972.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
62.
Wittstatt J, Reiprich S, Küspert M. Crazy little thing called sox—new insights in oligodendroglial sox protein function.
Int. J. Mol. Sci.
2019;
20
:2713. doi: 10.3390/ijms20112713.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
63.
Wang, J. et al. Paired related homeobox protein 1 regulates quiescence in human oligodendrocyte progenitors.
Cell Rep
. 10.1016/j.celrep.2018.11.068 (2018).
[
PMC free article
]
[
PubMed
]
65.
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling.
Nat. Biotechnol.
2020;
38
:1408–1414. doi: 10.1038/s41587-020-0591-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
66.
Li C, Virgilio MC, Collins KL, Welch JD. Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction.
Nat. Biotechnol.
2022 doi: 10.1038/s41587-022-01476-y.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
67.
Ma S, et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin.
Cell.
2020;
183
:1103–1116. doi: 10.1016/j.cell.2020.09.056.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
68.
Isogai E, Okumura K, Saito M, Tokunaga Y, Wakabayashi Y.
Meis1
plays roles in cortical development through regulation of cellular proliferative capacity in the embryonic cerebrum.
Biomed. Res.
2022;
43
:91–97. doi: 10.2220/biomedres.43.91.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
69.
Wang, C.-W. & Sun, Y. H. Segregation of eye and antenna fates maintained by mutual antagonism in
Drosophila
.
Development
139
, 3413–3421 (2012). [
PubMed
]
70.
Zaugg JB, et al. Current challenges in understanding the role of enhancers in disease.
Nat. Struct. Mol. Biol.
2022;
29
:1148–1158. doi: 10.1038/s41594-022-00896-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
72.
Bakken TE, et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans.
eLife.
2021;
10
:e64875. doi: 10.7554/eLife.64875.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
73.
Sebé-Pedrós A, et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq.
Cell.
2018;
173
:1520–1534. doi: 10.1016/j.cell.2018.05.019.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
74.
Schmidt D, et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding.
Science.
2010;
328
:1036–1040. doi: 10.1126/science.1186176.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
75.
Arendt D, et al. The origin and evolution of cell types.
Nat. Rev. Genet.
2016;
17
:744–757. doi: 10.1038/nrg.2016.127.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
76.
Alexander JM, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity.
eLife.
2019;
8
:e41769. doi: 10.7554/eLife.41769.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
77.
Xiao JY, Hafner A, Boettiger AN. How subtle changes in 3D structure can create large changes in transcription.
eLife.
2021;
10
:e64320. doi: 10.7554/eLife.64320.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
79.
Hafner A, Boettiger A. The spatial organization of transcriptional control.
Nat. Rev. Genet.
2023;
24
:53–68. doi: 10.1038/s41576-022-00526-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
80.
Novakovsky G, Dexter N, Libbrecht MW, Wasserman WW, Mostafavi S. Obtaining genetics insights from deep learning via explainable artificial intelligence.
Nat. Rev. Genet.
2023;
24
:125–137. doi: 10.1038/s41576-022-00532-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
85.
Arun, R., Suresh, V., Veni Madhavan, C. E. & Narasimha Murthy, M. N. On finding the natural number of topics with Latent Dirichlet Allocation: some observations. In
Advances in Knowledge Discovery and Data Mining
(eds Zaki, M. J. et al.) 391–402 (Springer, 2010).
86.
Cao, J., Xia, T., Li, J., Zhang, Y. & Tang, S. A density-based method for adaptive LDA model selection.
Neurocomputing
72
, 1775–1781 (2009).
88.
Hopfensitz M, et al. Multiscale binarization of gene expression data for reconstructing Boolean networks.
IEEE/ACM Trans. Comput. Biol. Bioinform.
2012;
9
:487–498. doi: 10.1109/TCBB.2011.62.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
89.
Suo S, et al. Revealing the critical regulators of cell identity in the mouse cell atlas.
Cell Rep.
2018;
25
:1436–1445. doi: 10.1016/j.celrep.2018.10.045.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
95.
Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data.
Cell Syst.
2019;
8
:281–291. doi: 10.1016/j.cels.2018.11.005.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
96.
Mimno, D., Wallach, H. M., Talley, E., Leenders, M. & McCallum, A. Optimizing semantic coherence in topic models. In
Proc. 2011 Conference on Empirical Methods in Natural Language Processing
262–272 (Association for Computational Linguistics, 2011).
97.
Lambert SA, et al. The human transcription factors.
Cell.
2018;
172
:650–665. doi: 10.1016/j.cell.2018.01.029.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
98.
Durand NC, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments.
Cell Syst.
2016;
3
:95–98. doi: 10.1016/j.cels.2016.07.002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
99.
Pliner HA, et al. Cicero predicts cis-regulatory DNA Interactions from single-cell chromatin accessibility data.
Mol. Cell.
2018;
71
:858–871. doi: 10.1016/j.molcel.2018.06.044.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
100.
Bruse, N. & van Heeringen, S. J. GimmeMotifs: an analysis framework for transcription factor motif analysis. Preprint at
bioRxiv
10.1101/474403 (2018).
101.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol.
2014;
15
:550. doi: 10.1186/s13059-014-0550-8.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
102.
De Rop FV, et al. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
eLife.
2022;
11
:e73971. doi: 10.7554/eLife.73971.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
104.
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.
Bioinformatics.
2011;
27
:764–770. doi: 10.1093/bioinformatics/btr011.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]