1.
Phan H, Andreotti F, Cooray N, et al Joint classification and prediction CNN framework for automatic sleep stage classification.
IEEE Trans Biomed Eng.
2019;
66
(5):1285–1296. doi: 10.1109/TBME.2018.2872652.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Iber C, Ancoli-Israel S, Chesson A L, et al The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications.
Westchester, IL: American academy of sleep medicine.
2007
[
Google Scholar
]
3.
Zhang J, Yao R, Ge W, et al Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
Comput Methods Programs Biomed.
2020;
183
:105089. doi: 10.1016/j.cmpb.2019.105089.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Liu G R, Lo Y L, Malik J, et al Diffuse to fuse EEG spectra-intrinsic geometry of sleep dynamics for classification.
Biomed Signal Process Control.
2020;
55
:101576. doi: 10.1016/j.bspc.2019.101576.
[
CrossRef
]
[
Google Scholar
]
5.
Gopan K G, Prabhu S S, Sinha N Sleep EEG analysis utilizing inter-channel covariance matrices.
Biocybern Biomed Eng.
2020;
40
(1):527–545. doi: 10.1016/j.bbe.2020.01.013.
[
CrossRef
]
[
Google Scholar
]
6.
Huang W, Guo B, Shen Y, et al Sleep staging algorithm based on multichannel data adding and multifeature screening.
Comput Methods Programs Biomed.
2020;
187
:105253. doi: 10.1016/j.cmpb.2019.105253.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Yildirim O, Baloglu U B, Acharya U R A deep learning model for automated sleep stages classification using PSG signals.
Int J Environ Res Public Health.
2019;
16
(4):599. doi: 10.3390/ijerph16040599.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Kanwal S, Uzair M, Ullah H, et al. An image based prediction model for sleep stage identification//2019 IEEE International Conference on Image Processing (ICIP), Taipei: IEEE, 2019: 1366-1370.
9.
Wang J, Zhang Y, Ma Q, et al. Deep learning for single-channel EEG signals sleep stage scoring based on frequency domain representation//8th International Conference on Health Information Science (HIS), Xi'an: Springer, Cham, 2019(11837): 121-133.
10.
Perslev M, Jensen M H, Darkner S, et al. U-time: a fully convolutional network for time series segmentation applied to sleep staging//33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver: NIPS, 2019(32): 4415-4426.
11.
Wang Yutong, Wang Yikun, Yao Li, et al. Single Channel sleep staging based on unsupervised feature learning//2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), Marrakesh: IEEE, 2019: 180-183.
12.
Wei Yuhui, Qi Xia, Wang H, et al A multi-class automatic sleep staging method based on long short-term memory network using single-lead electrocardiogram signals.
IEEE Access.
2019;
7
:85959–85970. doi: 10.1109/ACCESS.2019.2924980.
[
CrossRef
]
[
Google Scholar
]
13.
Kuo C E, Chen G T, Lin N Y. Automatic sleep staging using deep long short-term memory: validation in large-scale datasets//3rd International Conference on Computational Biology and Bioinformatics (ICCBB), Nagoya: ACM, 2019: 58-64.
14.
Michielli N, Acharya U R, Molinari F Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals.
Comput Biol Med.
2019;
106
:71–81. doi: 10.1016/j.compbiomed.2019.01.013.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Xu Z, Yang X, Sun J, et al Sleep stage classification using time-frequency spectra from consecutive multi-time points.
Front Neurosci.
2020;
14
:14. doi: 10.3389/fnins.2020.00014.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Yamabe M, Horie K, Shiokawa H, et al MC-SleepNet: large-scale sleep stage scoring in mice by deep neural networks.
Sci Rep.
2019;
9
(1):15793. doi: 10.1038/s41598-019-51269-8.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Jeon Y, Kim S, Choi H S, et al Pediatric sleep stage classification using multi-domain hybrid neural networks.
IEEE Access.
2019;
7
:96495–96505. doi: 10.1109/ACCESS.2019.2928129.
[
CrossRef
]
[
Google Scholar
]
18.
Niroshana S M I, Zhu Xin, Chen Ying, et al. Sleep stage classification based on EEG, EOG, and CNN-GRU deep learning model//2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka: IEEE, 2019. DOI: 10.1109/ICAwST.2019.8923359.
19.
Chen K, Zhang C, Ma J, et al Sleep staging from single-channel EEG with multi-scale feature and contextual information.
Sleep Breath.
2019;
23
(4):1159–1167. doi: 10.1007/s11325-019-01789-4.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Sun C, Chen C, Li W, et al A hierarchical neural network for sleep stage classification based on comprehensive feature learning and multi-flow sequence learning.
IEEE J Biomed Health Inform.
2020;
24
(5):1351–1366. doi: 10.1109/JBHI.2019.2937558.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Phan H, Andreotti F, Cooray N, et al SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging.
IEEE Trans Neural Syst Rehabil Eng.
2019;
27
(3):400–410. doi: 10.1109/TNSRE.2019.2896659.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Yuan Y, Jia K, Ma F, et al A hybrid self-attention deep learning framework for multivariate sleep stage classification.
BMC Bioinformatics.
2019;
20
(16):586.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
23.
Kemp B, Zwinderman A H, Tuk B, et al Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG.
IEEE Trans Biomed Eng.
2000;
47
(9):1185–1194. doi: 10.1109/10.867928.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Goldberger A L, Amaral L A, Glass L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.
Circulation.
2000;
101
(23):E215–E220.
[
PubMed
]
[
Google Scholar
]