1、GitHub地址:
https://github.com/oeo4b/kriging.js
2、核心代码
var variogram = kriging.train(t, x, y, model, sigma2, alpha):使用gaussian、exponential或spherical等模型对数据集进行训练,返回的是一个variogram对象;
var grid = kriging.grid(polygons,variogram,width);polygons是插值之后需要裁切的图形边界信息,最后一个参数,是插值格点精度大小
kriging.plot(canvas,grid,xlim,ylim,colors);将得到的格网grid渲染至canvas上。
3、离散的点如果过多,js会报异常,因此如果遇到这种情况,需要对点进行抽稀。
4、实现功能效果:
5、示例代码如下:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>leaflet克里金空间插值</title>
<style>
html, body, #map {
width: 100%;
height: 100%;
margin: 0;
padding: 0;
overflow: hidden;
cursor: default;
}
</style>
<link rel="stylesheet" href="https://unpkg.com/leaflet@1.5.1/dist/leaflet.css"/>
<script src="https://cdn.bootcss.com/jquery/3.0.0/jquery.min.js"></script>
<script src="https://unpkg.com/leaflet@1.5.1/dist/leaflet.js"></script>
<script src="https://unpkg.com/esri-leaflet@2.2.4/dist/esri-leaflet.js"></script>
<script src="kriging.js"></script>
<script src="point.js"></script>
<script src="world.js"></script>
</head>
<body>
<canvas id="canvasMap" style="display: none;" ></canvas>
<div id="map"></div>
<script>
var map = L.map('map', {
center: [38.65953686, 120.8696333],
zoom: 9
});
L.esri.tiledMapLayer({
url: 'http://map.geoq.cn/ArcGIS/rest/services/ChinaOnlineCommunity/MapServer/tile/{z}/{y}/{x}'
}).addTo(map);
//world.js,是插值之后需要裁切的图形边界信息
//point.js,是要插值的离散的点
//遍历world边界数据,生成scope边界线
var positions = [];
world[0].forEach(function (point) {
positions.push([point[1], point[0]]);
});
var scope = L.polyline(positions, {color: 'red'}).addTo(map);
map.fitBounds(scope.getBounds());
//根据scope边界线,生成范围信息
var xlim =[scope.getBounds()._southWest.lng,scope.getBounds()._northEast.lng];
var ylim =[scope.getBounds()._southWest.lat,scope.getBounds()._northEast.lat];
//进行克里金插值
function loadkriging()
{
var canvas = document.getElementById("canvasMap");
canvas.width = 1000;
canvas.height = 1000;
var n = points.length;
var t = [];//数值
var x = [];//经度
var y = [];//纬度
for (var i = 0; i < n; i++)
{
t.push(points[i].attributes.TN_);
x.push(points[i].geometry.x);
y.push(points[i].geometry.y);
L.circle([y[i], x[i]], {radius: 1}).addTo(map);
}
//对数据集进行训练
var variogram = kriging.train(t, x, y, "exponential", 0, 100);
//使用variogram对象使polygons描述的地理位置内的格网元素具备不一样的预测值,最后一个参数,是插值格点精度大小
var grid = kriging.grid(world, variogram, (ylim[1]-ylim[0])/150);
var colors = ["#006837", "#1a9850", "#66bd63", "#a6d96a", "#d9ef8b", "#ffffbf", "#fee08b", "#fdae61", "#f46d43", "#d73027", "#a50026"];
//将得到的格网grid渲染至canvas上
kriging.plot(canvas, grid, [xlim[0], xlim[1]], [ylim[0], ylim[1]], colors);
}
//将canvas对象转换成image的URL
function returnImgae() {
var mycanvas = document.getElementById("canvasMap");
return mycanvas.toDataURL("image/png");
}
loadkriging();
var imageBounds =[[ylim[0], xlim[0]], [ylim[1], xlim[1]]];
L.imageOverlay(returnImgae(), imageBounds, {opacity: 0.8}).addTo(map);
</script>
</body>
</html>