相关文章推荐
高大的毛衣  ·  错误:cannot find ...·  9 月前    · 
英俊的刺猬  ·  Android-Using DDMS - ...·  1 年前    · 
八块腹肌的牙膏  ·  java的递归写法-掘金·  1 年前    · 
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Apr 20; 42(4): 528–537.
PMCID: PMC9085588

Language: Chinese | English

负载骨髓干细胞来源外泌体的3D水凝胶通过调节免疫促进损伤软骨的修复

A 3D hydrogel loaded with exosomes derived from bone marrow stem cells promotes cartilage repair in rats by modulating immunological microenvironment

管 鹏飞

中山大学附属第三医院脊柱外科,广东 广州 510630, Department of Spine Surgery, Third Affiliated Hospital of Sun Yat- sen University, Guangzhou 510630, China

Find articles by 管 鹏飞

崔 瑞文

广州中医药大学第二附属医院器官移植科,广东 广州 510006, Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China

Find articles by 崔 瑞文

王 其友

南方医科大学第三附属医院脊柱外科,广东 广州 510515, Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China

Find articles by 王 其友

孙 永建

南方医科大学第三附属医院脊骨科中心小儿骨科,广东 广州 510515, Department of Pediatric Orthopedics, Center for Orthopedic Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China 中山大学附属第三医院脊柱外科,广东 广州 510630, Department of Spine Surgery, Third Affiliated Hospital of Sun Yat- sen University, Guangzhou 510630, China 广州中医药大学第二附属医院器官移植科,广东 广州 510006, Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China 南方医科大学第三附属医院脊柱外科,广东 广州 510515, Department of Spine Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China 南方医科大学第三附属医院脊骨科中心小儿骨科,广东 广州 510515, Department of Pediatric Orthopedics, Center for Orthopedic Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China 的多聚甲醛固定,用Actin-Tracker Green和Hoechst染色,并用共聚焦显微镜观察细胞的形态。

1.9. GelMA-Exo/RAW264.7细胞/软骨细胞共培养体系的建立

为了检测系统免疫微环境对软骨细胞的影响,用Transwell室(ThermoFisher)建立了GelMA-Exo/RAW264.7细胞/软骨细胞共培养体系。实验前用IL-1β(10 ng/mL)处理软骨细胞24 h。GelMA-Exo与1×10 5 RAW264.7细胞共培养,置于下室,1×10 4 软骨细胞置于上室。1.0 μm孔径的聚碳酸酯膜将两层膜隔开,不影响细胞因子的自由通过。

1.10. 基因表达测定

首先使用一种RNA提取试剂盒提取细胞总RNA(Omega),然后使用EVO MLV RT试剂盒将其(Accurate Biotechnology)逆转录成cDNA。采用LightCycler 480 SYBR Green Master Mix(TaKaRa)进行qRT-PCR分析。内参选择GAPDH。用2 -ΔΔCt 法测定基因的相对表达量。分别进行了3次独立的实验。引物序列见于 表 1

表 1

相关基因的引物序列

Primer sequences for PCR amplification of the target genes

Target Forward Reverse
COL-2 AACCCAAAGGACCCAAATAC CCGGACTGTGAGGTTAGGAT
SOX-9 CGTGGTGACAAGGGTGAGAC TAGGTGATGTTCTGGGAGGC
MMP-13 AGGCCTTCAGAAAAGCCTTC GAGCTGCTTGTCCAGGTTTC
Arg-1 CTCCAAGCCAAAGTCCTTAGAG GGAGCTGTCATTAGGGACATCA
IL-10 CTTACTGACTGGCATGAGGATCA GCAGCTCTAGGAGCATGTGG
iNOS GTTCTCAGCCCAACAATACAAGA GTGGACGGGTCGATGTCAC
TNF-α CGAGTGACAAGCCTGTAGCC ACAAGGTACAACCCATCGGC
GAPDH AGCCCAGAACATCATCCCTG CACCACCTTCTTGATGTCATC

1.11. Western blotting检测

细胞在含有蛋白酶和磷酸酶抑制剂(Thermo Fisher)的RIPA缓冲液(CWBIO)中研磨成匀浆。上清液在冰上裂解30 min,在4 ℃下12 000 r/min离心30 min收集。用BCA试剂盒(Beyotime)测定总蛋白浓度。将等量(40 μg)的蛋白上载于十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)上。将分离的蛋白转移到聚偏二氟乙烯(PVDF, Thermo Fisher)膜上,用5%脱脂乳封闭PVDF膜1 h,然后用一抗孵育过夜( 表 2 )。然后将PVDF膜与二抗孵育1 h,然后应用增强化学发光(ECL)试剂盒(Thermo Fisher)进行。在每一步之前,使用TBST缓冲盐水清洗膜3次。使用ImageJ软件进行分析。

表 2

相关抗体信息

Details of the primary antibodies used in this study

Product name Species reactivity Dilution (cell/tissue) Molecular weight Source
Arg-1 Rabbit 1∶200 35 000 GeneTex, America
iNOS Rabbit 1∶200 131 000 GeneTex, America
COL-2 Rabbit 1∶200 142 000 Abcam, England
CD9 Rabbit 1∶1000 25 000 Proteintech, America
MMP-13 Rabbit 1∶200 54 000 Abcam, England
TSG101 Rabbit 1∶1000 46 000 Abcam, England

1.12. 免疫荧光检测

首先样品用4% 多聚甲醛在PBS中固定30 min。然后,用0.2% Triton X-100(Biofroxx)处理细胞或组织10 min,在室温下用3% 牛血清白蛋白(BSA,Biofroxx)封闭1 h,最后加入一抗在4 ℃条件下过夜。此后,样品用PBS洗涤3次,室温下与二抗孵2 h,并进行Hoechst(Beyotime)染色。最后,在共聚焦显微镜下观察染色情况。相关抗体列在 表 2 中。

1.13. 大鼠膝关节软骨损伤模型的构建

12只8周龄雌性SD大鼠分为4组,即假手术组(Sham)、单纯损伤组(SI)、GelMA组和GelMA-Exo组。首先,分别使用腹腔注射吡嗪(6 mg/kg)和氯胺酮(70 mg/kg)进行麻醉后,左腿刮毛,用碘伏彻底消毒。在无菌条件下切开内侧髌骨皮肤和肌肉暴露股骨髁。随后,使用15 g针沿股骨纵轴钻一个直径2 mm的孔,使其损伤表面软骨。每只老鼠经处理后,缝合切口并再次消毒。然后把老鼠关在单独的笼子里,让它们自由地获得食物和水。术后4周对所有大鼠实施安乐死。

1.14. 组织学评价

治疗4周后处死大鼠,采集关节软骨标本。组织用多聚甲醛固定24 h,在10% EDTA(pH 7.4)中脱钙21 d后,进行石蜡包埋、切片。切片在二甲苯中脱蜡,通过一系列分级的乙醇洗涤再水化后,使用苏木精和伊红(H&E)以及Masson染色评估软骨修复情况。

1.15. 统计学分析

实验数据用均数±标准差表示。采用GraphPad Prism 5软件进行Tukey检验的单因素方差分析。所有实验至少重复3次。 P <0.05为差异具有统计学意义。

2. 结果

2.1. 骨髓干细胞及其外泌体表征

在光学显微镜下,骨髓间充质干细胞表现为典型的纺锤体形态( 图 1A )。用茜素红、油红染色表明提取的骨髓间充质干细胞具有多细胞系分化潜力( 图 1B )。通过透射电镜观察,其形态为圆形或椭圆形,细胞膜结构完整( 图 1C )。粒径分析表明直径主要集中在89 nm左右,与外泌体的粒径分布一致( 图 1D [ 10 ] 。蛋白免疫印迹结果分析表明,纳米粒子表达了外泌体特异性标记CD9和TSG101( 图 1E )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-1.jpg

骨髓干细胞及其外泌体的鉴定

Identification of bone marrow stem cells (BMSCs) and their exosomes. A : Typical spindle- like morphology of the BMSCs. B : Alizarin Red staining and Oil-Red-O staining of the BMSCs. C : TEM of the obtained nanoparticles. D : Particle size analysis of the nanoparticles by qNano ® system. E : Western blotting of exosome markers CD9 and TSG101.

2.2. 材料的合成与表征

通过甲基丙烯酸改性明胶前后的H1核磁共振谱图,发现MA改性明胶(GelMA)在5.3 ppm和5.5 ppm新出现了两个属于甲基丙烯酰胺(MA)的质子峰( 图 2A )。流变性能测试表明,GelMA-Exo的储能模量(G’)远大于损耗模量(G”),并且它的储存模量为1525±50 Pa(图 2B)。SEM成像结果显示水凝胶呈多孔网络结构,且外泌体结合在GelMA水凝胶内表面( 图 2C )。外泌体的释放持续了14 d,超过80%的外泌体从水凝胶中释放( 图 2D ~ ~E E )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-2.jpg

负载外泌体的GelMA水凝胶的特性

Characteristics of GelMA hydrogel loaded with exosomes. A : NMR characterization of methacrylated gelatin. B : Rheological analysis of GelMA-Exo hydrogel. C : SEM image of GelMA-Exo hydrogel. D : Daily release curve of exosomes ( n =3). E : Cumulative release profile of exosomes for 14 days ( n =3).

2.3. 生物相容性评估

活/死染色显示各组均可见大量活细胞(绿色),少量死细胞(红色)( 图 3A )。CCK-8分析结果表明,软骨细胞增殖随着培养时间的延长而增加。在第3天和第7天,GelMA-Exo和Exo组软骨细胞活性显著高于对照组和GelMA组( P <0.05, 图 3B )。细胞骨架成像显示,各组的软骨细胞都具有较大的扩张面积( 图 2C )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-3.jpg

每组生物相容性评估

Biocompatibility evaluation in each group. A : Live/Dead analysis in each group after 1 day of cell culture (Scale bar=200 μm). B : CCK8 assay of chondrocytes in each group ( ** P < 0.01, *** P < 0.001, n =5). C : The cytoskeleton images showing adhesion of the chondrocytes after 3 days of culture in each group (Scale bar=100 μm).

2.4. GelMA-Exo促进RAW264.7细胞由M1型向M2型转化

装载在GelMA水凝胶上的外泌体能够被RAW264.7细胞吞噬并发挥免疫调节作用( 图 4A )。第3天,q-PCR结果显示,M2表型标记(Arg-1和IL-10)在GelMA-Exo组和Exo组的表达值显著高于对照组( P <0.05, 图 4B )。而GelMA组与对照组差异无统计学意义( P >0.05, 图 4B )。在第7天时,q-PCR结果显示GelMAExo显著提高了Arg-1和IL-10的表达水平,而iNOS和TNF-α的表达水平降低( P <0.05, 图 4B )。与q-PCR分析一致,第7天免疫荧光结果显示与对照组相比,GelMAExo组iNOS阳性细胞比例较低,而Arg-1阳性细胞比例较高( P <0.05, 图 4C ~ ~D D )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-4.jpg

GelMA-Exo明显促进RAW264.7细胞的极化

GelMA- Exo significantly promotes the polarization of RAW264.7 cells. A : Exosomes loaded in the hydrogel are taken up by RAW264.7 cells (Scale bar=50 μm). B : q-PCR of RAW264.7 cells after 3 and 7 days of culture in each group ( n =3). C : Immunofluorescence detection of RAW264.7 cells after 7 days of culture in each group (Scale bar=50 μm). D : Quantitative analysis of fluorescence intensity of iNOS and ARG- 1 ( n =3). ANOVA followed by Tukey's test was used for statistical analysis ( ** P < 0.01, *** P < 0.001).

2.5. GelMA-Exo通过改善免疫微环境促进IL-1β损伤的软骨细胞的修复

GelMA组与对照组各项指标相比差异没有统计学意义( P >0.05, 图 5A )。GelMA-Exo组和Exo组显著上调软骨细胞的COL-2和SOX-9水平,下调MMP-13的表达( P <0.05, 图 5A )。q-PCR结果还显示GelMA-Exo组在第7天的治疗效果明显优于Exo组( P <0.05, 图 5A )。免疫荧光染色分析与q-PCR结果一致,GelMA-Exo组COL-2蛋白表达最高,而MMP-13蛋白表达最低( P <0.05, 图 5B ~ ~C C )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-5.jpg

GelMA-Exo明显促进IL-1β损伤的软骨细胞的修复通过改善免疫微环境

GelMA-Exo significantly promotes repair of chondrocytes with IL-1β-induced injury by improving the immune microenvironment. A : q-PCR of the chondrocytes after 7 days of culture in each group ( n =3). B : Immunofluorescence detection of the chondrocytes after 7 days of culture in each group (Scale bar=100 μm). C : Quantitative analysis of fluorescence intensity of COL-2 and MMP-13 ( n =3). ANOVA followed by Tukey' s test was used for statistical analysis ( * P < 0.05, ** P < 0.01, *** P < 0.001).

2.6. GelMA-Exo明显促进大鼠软骨损伤的修复

动物模型建立4周后,采集动物膝关节标本进行HE和Msaaon染色( 图 6 )。染色显示假手术组关节软骨清晰,表面光滑完整。单纯损伤组关节软骨损伤区域出现较大的软骨缺损、断裂,基本很少有再生的软骨。相比于单纯损伤组,GelMA组和GelMA-Exo组修复效果良好,且GelMA-Exo组修复效果大于GelMA组。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-42-4-528-6.jpg

GelMA-Exo明显促进大鼠膝关节软骨损伤的修复

GelMA-Exo significantly promotes repair of knee articular cartilage injury in rats (HE and Masson staining).

3. 讨论

研究认为软骨损伤所产生的炎症环境对软骨细胞的死亡和肥大、细胞外间质破裂、异位骨形成以及软骨损伤进展到骨关节炎是至关重要的 [ 3 ] 。M1巨噬细胞及其分泌的炎症因子能抑制骨髓间充质干细胞的增殖、活性以及软骨分化,从而加速ECM的降解 [ 17 - 18 ] 。研究表明CD14 + 巨噬细胞和促炎细胞因子能抑制骨关节炎滑膜衍生干细胞(SDSC)向软骨分化,并且他们发现IL-1β和TNF-α显着抑制SDSCs中软骨形成基因的表达 [ 19 ] 。mTORC1通过驱动M1巨噬细胞的极化来促进肥大软骨细胞的发育和成熟 [ 5 ] 。总的来说,这些发现表明M1巨噬细胞不利于软骨修复,促进巨噬细胞由M1型向M2型转化将有利于软骨损伤的修复。

外泌体携带各种蛋白质、脂质和各种非编码RNA,特别是miRNA,具有良好的免疫调节作用 [ 20 - 22 ] 。此外,BMSCs来源的外泌体已被证明可以诱导细胞外调节蛋白激酶和蛋白激酶B通路的快速磷酸化,促进细胞增殖和迁移,与CCK8结果一致 [ 23 ] 。有学者将骨髓干细胞来源的外泌体注射到大鼠关节腔内用于缓解关节炎的进展 [ 24 ] 。然而,骨髓干细胞外泌体是否可以通过调控免疫而促进软骨损伤的修复却很少有文献报道。本研究利用GelMA水凝胶联合骨髓干细胞来源外泌体,用于软骨损伤的治疗。材料学表征表明我们成功合成了GelMA水凝胶,是一个稳定的粘弹性固体,弹性模量满足体内应用的条件,并且外泌体成功负载到GelMA水凝胶上 [ 13 , 25 ] 。GelMA水凝胶在某些性质上与天然ECM相似,具有良好的生物相容性,可充当外泌体的理想载体,与实验结果一致 [ 12 - 14 ] 。GelMA水凝胶的多孔表面和亲水特性也有利于细胞粘附 [ 26 - 27 ] 。此外,动物实验表明GelMA水凝胶也能促进软骨的修复,这可能归功于它的ECM成分 [ 28 ] 。外泌体在GelMA水凝胶内释放持续了14 d,且超过80%的外泌体从水凝胶中释放出来,这确保了最佳的生物治疗效果。相比于外泌体一过性的释放,水凝胶的缓释作用能使外泌体长时间发挥生物学功能。将RAW细胞与不同样品共培养,Exo组和GelMA-Exo组在第3天没有差异而第7天出现差异,表明缓释的外泌体具有更强的调节作用。

在软骨损伤过程中,静息的巨噬细胞可被刺激分化为M1和M2亚群,M1亚群主要参与炎症的早期阶段,而M2亚群主要参与修复阶段 [ 5 ] 。M1巨噬细胞表面的模式识别受体蛋白和Toll样受体蛋白可识别关节腔内的损伤相关分子模式,激活NF-κB信号通路,从而促进炎症因子的释放 [ 18 ] 。本研究表明负载外泌体的GelMA水凝胶可以有效抑制iNOS和TNF-α的表达,并促进巨噬细胞由M1型向M2转化。根据我们先前的研究,外泌体内所含的各种蛋白质、脂质以及非编码RNA,特别是miR-199a,它可以通过抑制NF-κB通路来调节免疫功能 [ 29 ]

进一步我们通过建立Transwell共培养模型发现负载外泌体的GelMA水凝胶能够通过调控免疫进而促进SOX-9和COL-2的表达,而抑制MMP-13的表达。SOX-9被认为是软骨形成的关键转录因子之一,可以调节软骨形成相关标志物(Ⅱ型胶原)的表达和GAG基质的形成 [ 30 ] 。M1型巨噬细胞释放的TNF-α和IL-1β等促炎因子可以通过降低炎症环境中软骨形成转录因子SOX9 mRNA的水平来抑制软骨形成基因的表达。此外,炎症免疫细胞产生的炎症因子如IL-1β、iNOS和TNF-α会导致基质蛋白酶如MMP-1和MMP-13过度表达,进而导致软骨细胞凋亡和基质降解。M2巨噬细胞,也称为创伤修复巨噬细胞,其分泌的许多抗炎分子,包括Arg-1、IL-10等,为软骨细胞修复创造了一个必要的抗炎环境,抑制了MMP-13的表达,从而促进了损伤软骨细胞的修复 [ 31 ]

综上,本研究将骨髓干细胞来源的外泌体负载到GelMA水凝胶上,体外实验表明负载在水凝胶上的外泌体可以通过抑制炎症并且可以通过调节巨噬细胞的M2极化来减轻炎症对软骨细胞的抑制作用,从而促进软骨ECM的合成。同时,体内实验表明负载外泌体的GelMA有利于大鼠软骨损伤的修复。本研究将有望为临床治疗软骨损伤提供一种新思路。

Biography

管鹏飞,硕士,E-mail: moc.qq@4629305541

Funding Statement

南方医科大学第三附属医院院长基金面上项目(YM2021013);广东省自然科学基金面上项目(2020A1515010372)

References

1. Jiang SP, Guo WM, Tian GZ, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int. 2020; 20 (1):5690252. [ PMC free article ] [ PubMed ] [ Google Scholar ]
2. Lu Y, Zhou L, Wang LJ, et al. The role of SIRT1 in BMP2-induced chondrogenic differentiation and cartilage maintenance under oxidative stress. Aging. 2020; 12 (10):9000–13. doi: 10.18632/aging.103161. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Li MZ, Yin H, Yan ZN, et al. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022; 140 (7):23–42. [ PubMed ] [ Google Scholar ]
4. Kulkarni P, Martson A, Vidya R, et al. Pathophysiological landscape of osteoarthritis[M] //Advances in Clinical Chemistry. Amsterdam: Elsevier, 2021: 37-90.
5. Fernandes TL, Gomoll AH, Lattermann C, et al. Macrophage: a potential target on cartilage regeneration. Front Immunol. 2020; 11 (8):111. [ PMC free article ] [ PubMed ] [ Google Scholar ]
6. Fujihara Y, Abe T, Asawa Y, et al. Influence of damage-associated molecular patterns from chondrocytes in tissue-engineered cartilage. Tissue Eng A. 2021; 27 (1/2):1–9. [ PubMed ] [ Google Scholar ]
7. Liu H, Li RC, Liu T, et al. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11 (2):1912. [ PMC free article ] [ PubMed ] [ Google Scholar ]
8. Ha DH, Kim HK, Lee J, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020; 9 (5):1157. doi: 10.3390/cells9051157. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020; 367 (6478):156–68. [ PMC free article ] [ PubMed ] [ Google Scholar ]
10. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019; 88 :487–514. doi: 10.1146/annurev-biochem-013118-111902. [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Zhang L, Yu DH. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta BBA Rev Cancer. 2019; 1871 (2):455–68. doi: 10.1016/j.bbcan.2019.04.004. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Klotz BJ, Gawlitta D, Rosenberg AJWP, et al. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol. 2016; 34 (5):394–407. doi: 10.1016/j.tibtech.2016.01.002. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015; 73 (5):254–71. [ PMC free article ] [ PubMed ] [ Google Scholar ]
14. Kurian AG, Singh RK, Patel KD, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2022; 8 (2):267–95. [ PMC free article ] [ PubMed ] [ Google Scholar ]
15. Fan L, Xiao CR, Guan PF, et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv Healthc Mater. 2022; 11 (1):2101556. doi: 10.1002/adhm.202101556. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Guan PF, Liu C, Xie DH, et al. Exosome-loaded extracellular matrix-mimic hydrogel with anti-inflammatory property Facilitates/ promotes growth plate injury repair. Bioact Mater. 2022; 10 (4):145–58. [ PMC free article ] [ PubMed ] [ Google Scholar ]
17. Fahy N, de Vries-van Melle ML, Lehmann J, et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr Cartil. 2014; 22 (8):1167–75. doi: 10.1016/j.joca.2014.05.021. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Freytes DO, Kang JW, Marcos-Campos I, et al. Macrophages modulate the viability and growth of human mesenchymal stem cells. J Cell Biochem. 2013; 114 (1):220–9. doi: 10.1002/jcb.24357. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Han SA, Lee S, Seong SC, et al. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells. Tissue Eng A. 2014; 20 (19/20):2680–91. [ PMC free article ] [ PubMed ] [ Google Scholar ]
20. Wang YF, Yu DS, Liu ZM, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 2017; 8 (3):189. [ PMC free article ] [ PubMed ] [ Google Scholar ]
21. Liu H, Li RC, Liu T, et al. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in rheumatoid arthritis. Front Immunol. 2020; 11 (5):1912. [ PMC free article ] [ PubMed ] [ Google Scholar ]
22. Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021; 97 (6):107823. [ PubMed ] [ Google Scholar ]
23. Zhang SP, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018; 156 (10):16–27. [ PubMed ] [ Google Scholar ]
24. He L, He TW, Xing JH, et al. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020; 11 (5):276. [ PMC free article ] [ PubMed ] [ Google Scholar ]
25. Liu C, Fan L, Tian ZM, et al. Self-curling electroconductive nerve dressing for enhancing peripheral nerve regeneration in diabetic rats. Bioact Mater. 2021; 6 (11):3892–903. doi: 10.1016/j.bioactmat.2021.03.034. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Xiao SN, Zhao TF, Wang JK, et al. Gelatin methacrylate (GelMA)- based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep. 2019; 15 (5):664–79. doi: 10.1007/s12015-019-09893-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Sun MY, Sun XT, Wang ZY, et al. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers. 2018; 10 (11):1290. doi: 10.3390/polym10111290. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. Sakr MA, Sakthivel K, Hossain T, et al. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomedical Materials Res. 2022; 110 (3):708–24. doi: 10.1002/jbm.a.37310. [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Fan L, Guan PF, Xiao CR, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021; 6 (9):2754–66. doi: 10.1016/j.bioactmat.2021.02.005. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bonecartilage interface in osteoarthritis. Int J Mol Sci. 2019; 20 (18):4653. doi: 10.3390/ijms20184653. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Wu CL, Harasymowicz NS, Klimak MA, et al. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr Cartil. 2020; 28 (5):544–54. doi: 10.1016/j.joca.2019.12.007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University