Union Find 并查集算法原理及应用

在线学习网站: https://labuladong.github.io/algo/
读完本文,可以去力扣解决如下题目:
323. 无向图中的连通分量数目(中等)
130. 被围绕的区域(中等)
990. 等式方程的可满足性(中等)
记得我之前在讲 图论算法基础 时说图论相关的算法不会经常考,但最近被打脸了,因为一些读者和我反馈近期求职面试涉及很多图论相关的算法,可能是因为环境不好所以算法这块更卷了吧。
常见的图论算法我都已经写过了,这里按难度顺序列举一下:
并查集(Union-Find)算法是一个专门针对「动态连通性」的算法,我之前写过两次,因为这个算法的考察频率高,而且它也是最小生成树算法的前置知识,所以我整合了本文,争取一篇文章把这个算法讲明白。
首先,从什么是图的动态连通性开始讲。
一、动态连通性
简单说,动态连通性其实可以抽象成给一幅图连线。比如下面这幅图,总共有 10 个节点,他们互不相连,分别用 0~9 标记:

现在我们的 Union-Find 算法主要需要实现这两个 API:
class UF {
/* 将 p 和 q 连接 */
public void union(int p, int q);
/* 判断 p 和 q 是否连通 */
public boolean connected(int p, int q);
/* 返回图中有多少个连通分量 */
public int count();
这里所说的「连通」是一种等价关系,也就是说具有如下三个性质:
1、自反性:节点
p
和
p
是连通的。
2、对称性:如果节点
p
和
q
连通,那么
q
和
p
也连通。
3、传递性:如果节点
p
和
q
连通,
q
和
r
连通,那么
p
和
r
也连通。
比如说之前那幅图,0~9 任意两个
不同
的点都不连通,调用
connected
都会返回 false,连通分量为 10 个。
如果现在调用
union(0, 1)
,那么 0 和 1 被连通,连通分量降为 9 个。
再调用
union(1, 2)
,这时 0,1,2 都被连通,调用
connected(0, 2)
也会返回 true,连通分量变为 8 个。

判断这种「等价关系」非常实用,比如说编译器判断同一个变量的不同引用,比如社交网络中的朋友圈计算等等。
这样,你应该大概明白什么是动态连通性了,Union-Find 算法的关键就在于
union
和
connected
函数的效率。那么用什么模型来表示这幅图的连通状态呢?用什么数据结构来实现代码呢?
二、基本思路
注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。
怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

class UF {
// 记录连通分量
private int count;
// 节点 x 的父节点是 parent[x]
private int[] parent;
/* 构造函数,n 为图的节点总数 */
public UF(int n) {
// 一开始互不连通
this.count = n;
// 父节点指针初始指向自己
parent = new int[n];
for (int i = 0; i < n; i++)
parent[i] = i;
/* 其他函数 */
如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上 :

public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 将两棵树合并为一棵
parent[rootP] = rootQ;
// parent[rootQ] = rootP 也一样
count--; // 两个分量合二为一
/* 返回某个节点 x 的根节点 */
private int find(int x) {
// 根节点的 parent[x] == x
while (parent[x] != x)
x = parent[x];
return x;
/* 返回当前的连通分量个数 */
public int count() {
return count;
这样,如果节点
p
和
q
连通的话,它们一定拥有相同的根节点
:

public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
至此,Union-Find 算法就基本完成了。是不是很神奇?竟然可以这样使用数组来模拟出一个森林,如此巧妙的解决这个比较复杂的问题!
那么这个算法的复杂度是多少呢?我们发现,主要 API
connected
和
union
中的复杂度都是
find
函数造成的,所以说它们的复杂度和
find
一样。
find
主要功能就是从某个节点向上遍历到树根,其时间复杂度就是树的高度。我们可能习惯性地认为树的高度就是
logN
,但这并不一定。
logN
的高度只存在于平衡二叉树,对于一般的树可能出现极端不平衡的情况,使得「树」几乎退化成「链表」,树的高度最坏情况下可能变成
N
。

所以说上面这种解法,
find
,
union
,
connected
的时间复杂度都是 O(N)。这个复杂度很不理想的,你想图论解决的都是诸如社交网络这样数据规模巨大的问题,对于
union
和
connected
的调用非常频繁,每次调用需要线性时间完全不可忍受。
问题的关键在于,如何想办法避免树的不平衡呢 ?只需要略施小计即可。
三、平衡性优化
我们要知道哪种情况下可能出现不平衡现象,关键在于
union
过程:
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 将两棵树合并为一棵
parent[rootP] = rootQ;
// parent[rootQ] = rootP 也可以
count--;
我们一开始就是简单粗暴的把
p
所在的树接到
q
所在的树的根节点下面,那么这里就可能出现「头重脚轻」的不平衡状况,比如下面这种局面:

长此以往,树可能生长得很不平衡。
我们其实是希望,小一些的树接到大一些的树下面,这样就能避免头重脚轻,更平衡一些
。解决方法是额外使用一个
size
数组,记录每棵树包含的节点数,我们不妨称为「重量」:
class UF {
private int count;
private int[] parent;
// 新增一个数组记录树的“重量”
private int[] size;
public UF(int n) {
this.count = n;
parent = new int[n];
// 最初每棵树只有一个节点
// 重量应该初始化 1
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
/* 其他函数 */
比如说
size[3] = 5
表示,以节点
3
为根的那棵树,总共有
5
个节点。这样我们可以修改一下
union
方法:
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
// 小树接到大树下面,较平衡
if (size[rootP] > size[rootQ]) {
parent[rootQ] = rootP;
size[rootP] += size[rootQ];
} else {
parent[rootP] = rootQ;
size[rootQ] += size[rootP];
count--;
这样,通过比较树的重量,就可以保证树的生长相对平衡,树的高度大致在
logN
这个数量级,极大提升执行效率。
此时,
find
,
union
,
connected
的时间复杂度都下降为 O(logN),即便数据规模上亿,所需时间也非常少。
四、路径压缩
这步优化虽然代码很简单,但原理非常巧妙。
其实我们并不在乎每棵树的结构长什么样,只在乎根节点 。
因为无论树长啥样,树上的每个节点的根节点都是相同的,所以能不能进一步压缩每棵树的高度,使树高始终保持为常数?

这样每个节点的父节点就是整棵树的根节点,
find
就能以 O(1) 的时间找到某一节点的根节点,相应的,
connected
和
union
复杂度都下降为 O(1)。
要做到这一点主要是修改
find
函数逻辑,非常简单,但你可能会看到两种不同的写法。
第一种是在
find
中加一行代码:
private int find(int x) {
while (parent[x] != x) {
// 这行代码进行路径压缩
parent[x] = parent[parent[x]];
x = parent[x];
return x;
这个操作有点匪夷所思,看个 GIF 就明白它的作用了(为清晰起见,这棵树比较极端):

用语言描述就是,每次 while 循环都会把一对儿父子节点改到同一层,这样每次调用
find
函数向树根遍历的同时,顺手就将树高缩短了。
路径压缩的第二种写法是这样:
// 第二种路径压缩的 find 方法
public int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
return parent[x];
我一度认为这种递归写法和第一种迭代写法做的事情一样,但实际上是我大意了,有读者指出这种写法进行路径压缩的效率是高于上一种解法的。
这个递归过程有点不好理解,你可以自己手画一下递归过程。我把这个函数做的事情翻译成迭代形式,方便你理解它进行路径压缩的原理:
// 这段迭代代码方便你理解递归代码所做的事情
public int find(int x) {
// 先找到根节点
int root = x;
while (parent[root] != root) {
root = parent[root];
// 然后把 x 到根节点之间的所有节点直接接到根节点下面
int old_parent = parent[x];
while (x != root) {
parent[x] = root;
x = old_parent;
old_parent = parent[old_parent];
return root;
这种路径压缩的效果如下:

比起第一种路径压缩,显然这种方法压缩得更彻底,直接把一整条树枝压平,一点意外都没有。就算一些极端情况下产生了一棵比较高的树,只要一次路径压缩就能大幅降低树高,从 摊还分析 的角度来看,所有操作的平均时间复杂度依然是 O(1),所以从效率的角度来说,推荐你使用这种路径压缩算法。
另外,如果使用路径压缩技巧,那么
size
数组的平衡优化就不是特别必要了
。所以你一般看到的 Union Find 算法应该是如下实现:
class UF {
// 连通分量个数
private int count;
// 存储每个节点的父节点
private int[] parent;
// n 为图中节点的个数
public UF(int n) {
this.count = n;
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
// 将节点 p 和节点 q 连通
public void union(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
if (rootP == rootQ)
return;
parent[rootQ] = rootP;
// 两个连通分量合并成一个连通分量
count--;
// 判断节点 p 和节点 q 是否连通
public boolean connected(int p, int q) {
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
public int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]);
return parent[x];
// 返回图中的连通分量个数
public int count() {
return count;
Union-Find 算法的复杂度可以这样分析:构造函数初始化数据结构需要 O(N) 的时间和空间复杂度;连通两个节点
union
、判断两个节点的连通性
connected
、计算连通分量
count
所需的时间复杂度均为 O(1)。
到这里,相信你已经掌握了 Union-Find 算法的核心逻辑,总结一下我们优化算法的过程:
1、用
parent
数组记录每个节点的父节点,相当于指向父节点的指针,所以
parent
数组内实际存储着一个森林(若干棵多叉树)。
2、用
size
数组记录着每棵树的重量,目的是让
union
后树依然拥有平衡性,保证各个 API 时间复杂度为 O(logN),而不会退化成链表影响操作效率。
3、在
find
函数中进行路径压缩,保证任意树的高度保持在常数,使得各个 API 时间复杂度为 O(1)。使用了路径压缩之后,可以不使用
size
数组的平衡优化。
下面我们看一些具体的并查集题目。
题目实践
力扣第 323 题「无向图中连通分量的数目」就是最基本的连通分量题目:
给你输入一个包含
n
个节点的图,用一个整数
n
和一个数组
edges
表示,其中
edges[i] = [ai, bi]
表示图中节点
ai
和
bi
之间有一条边。请你计算这幅图的连通分量个数。
函数签名如下:
int countComponents(int n, int[][] edges)
这道题我们可以直接套用
UF
类来解决:
public int countComponents(int n, int[][] edges) {
UF uf = new UF(n);
// 将每个节点进行连通
for (int[] e : edges) {
uf.union(e[0], e[1]);
// 返回连通分量的个数
return uf.count();
class UF {
// 见上文
另外,一些使用 DFS 深度优先算法解决的问题,也可以用 Union-Find 算法解决 。
比如力扣第 130 题「被围绕的区域」:
给你一个 M×N 的二维矩阵,其中包含字符
X
和
O
,让你找到矩阵中
四面
被
X
围住的
O
,并且把它们替换成
X
。
void solve(char[][] board);
注意哦,必须是四面被围的
O
才能被换成
X
,也就是说边角上的
O
一定不会被围,进一步,与边角上的
O
相连的
O
也不会被
X
围四面,也不会被替换。

PS:这让我想起小时候玩的棋类游戏「黑白棋」,只要你用两个棋子把对方的棋子夹在中间,对方的子就被替换成你的子。可见,占据四角的棋子是无敌的,与其相连的边棋子也是无敌的(无法被夹掉)。
其实这个问题应该归为 岛屿系列问题 使用 DFS 算法解决:
先用 for 循环遍历棋盘的
四边
,用 DFS 算法把那些与边界相连的
O
换成一个特殊字符,比如
#
;然后再遍历整个棋盘,把剩下的
O
换成
X
,把
#
恢复成
O
。这样就能完成题目的要求,时间复杂度 O(MN)。
但这个问题也可以用 Union-Find 算法解决,虽然实现复杂一些,甚至效率也略低,但这是使用 Union-Find 算法的通用思想,值得一学。
你可以把那些不需要被替换的
O
看成一个拥有独门绝技的门派,它们有一个共同「祖师爷」叫
dummy
,这些
O
和
dummy
互相连通,而那些需要被替换的
O
与
dummy
不连通
。

这就是 Union-Find 的核心思路,明白这个图,就很容易看懂代码了。
首先要解决的是,根据我们的实现,Union-Find 底层用的是一维数组,构造函数需要传入这个数组的大小,而题目给的是一个二维棋盘。
这个很简单,二维坐标
(x,y)
可以转换成
x * n + y
这个数(
m
是棋盘的行数,
n
是棋盘的列数),
敲黑板,这是将二维坐标映射到一维的常用技巧
。
其次,我们之前描述的「祖师爷」是虚构的,需要给他老人家留个位置。索引
[0.. m*n-1]
都是棋盘内坐标的一维映射,那就让这个虚拟的
dummy
节点占据索引
m * n
好了。
看解法代码:
void solve(char[][] board) {
if (board.length == 0) return;
int m = board.length;
int n = board[0].length;
// 给 dummy 留一个额外位置
UF uf = new UF(m * n + 1);
int dummy = m * n;
// 将首列和末列的 O 与 dummy 连通
for (int i = 0; i < m; i++) {
if (board[i][0] == 'O')
uf.union(i * n, dummy);
if (board[i][n - 1] == 'O')
uf.union(i * n + n - 1, dummy);
// 将首行和末行的 O 与 dummy 连通
for (int j = 0; j < n; j++) {
if (board[0][j] == 'O')
uf.union(j, dummy);
if (board[m - 1][j] == 'O')
uf.union(n * (m - 1) + j, dummy);
// 方向数组 d 是上下左右搜索的常用手法
int[][] d = new int[][]{{1,0}, {0,1}, {0,-1}, {-1,0}};
for (int i = 1; i < m - 1; i++)
for (int j = 1; j < n - 1; j++)
if (board[i][j] == 'O')
// 将此 O 与上下左右的 O 连通
for (int k = 0; k < 4; k++) {
int x = i + d[k][0];
int y = j + d[k][1];
if (board[x][y] == 'O')
uf.union(x * n + y, i * n + j);
// 所有不和 dummy 连通的 O,都要被替换
for (int i = 1; i < m - 1; i++)
for (int j = 1; j < n - 1; j++)
if (!uf.connected(dummy, i * n + j))
board[i][j] = 'X';
class UF {
// 见上文
这段代码很长,其实就是刚才的思路实现,只有和边界
O
相连的
O
才具有和
dummy
的连通性,他们不会被替换。
其实用 Union-Find 算法解决这个简单的问题有点杀鸡用牛刀,它可以解决更复杂,更具有技巧性的问题, 主要思路是适时增加虚拟节点,想办法让元素「分门别类」,建立动态连通关系 。
力扣第 990 题「等式方程的可满足性」用 Union-Find 算法就显得十分优美了,题目是这样:
给你一个数组
equations
,装着若干字符串表示的算式。每个算式
equations[i]
长度都是 4,而且只有这两种情况:
a==b
或者
a!=b
,其中
a,b
可以是任意小写字母。你写一个算法,如果
equations
中所有算式都不会互相冲突,返回 true,否则返回 false。
比如说,输入
["a==b","b!=c","c==a"]
,算法返回 false,因为这三个算式不可能同时正确。
再比如,输入
["c==c","b==d","x!=z"]
,算法返回 true,因为这三个算式并不会造成逻辑冲突。
我们前文说过,动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,其实
==
关系也是一种等价关系,具有这些性质。所以这个问题用 Union-Find 算法就很自然。
核心思想是,将
equations
中的算式根据
==
和
!=
分成两部分,先处理
==
算式,使得他们通过相等关系各自勾结成门派(连通分量);然后处理
!=
算式,检查不等关系是否破坏了相等关系的连通性
。
boolean equationsPossible(String[] equations) {
// 26 个英文字母
UF uf = new UF(26);
// 先让相等的字母形成连通分量
for (String eq : equations) {
if (eq.charAt(1) == '=') {
char x = eq.charAt(0);
char y = eq.charAt(3);
uf.union(x - 'a', y - 'a');
// 检查不等关系是否打破相等关系的连通性
for (String eq : equations) {
if (eq.charAt(1) == '!') {
char x = eq.charAt(0);
char y = eq.charAt(3);
// 如果相等关系成立,就是逻辑冲突
if (uf.connected(x - 'a', y - 'a'))
return false;
return true;