线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:
max fx = 2*x1 + 3*x2 - 5*x3
s.t. x1 + 3*x2 + x3 <= 12
2*x1 - 5*x2 + x3 >= 10
x1 + x2 + x3 = 7
x1, x2, x3 >=0
线性规划问题的建模和求解,通常按照以下步骤进行:
(1)问题定义,确定决策变量、目标函数和约束条件;
(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;
欢迎关注 Youcans 原创系列,每周更新数模笔记
Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法
PuLP是一个开源的第三方工具包,可以求解线性规划、整数规划、混合整数规划问题。
下面以该题为例讲解 PuLP 求解线性规划问题的步骤:
-(0)导入 PuLP库函数
import pulp
-(1)定义一个规划问题
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
pulp.LpProblem 是定义问题的构造函数。
"LPProbDemo1"是用户定义的问题名(用于输出信息)。
参数 sense 用来指定求最小值/最大值问题,可选参数值:LpMinimize、LpMaximize 。
-(2)定义决策变量
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
pulp.LpVariable 是定义决策变量的函数。
‘x1’ 是用户定义的变量名。
参数 lowBound、upBound 用来设定决策变量的下界、上界;可以不定义下界/上界,默认的下界/上界是负无穷/正无穷。本例中 x1,x2,x3 的取值区间为 [0,7]。
参数 cat 用来设定变量类型,可选参数值:‘Continuous’ 表示连续变量(默认值)、’ Integer ’ 表示离散变量(用于整数规划问题)、’ Binary ’ 表示0/1变量(用于0/1规划问题)。
-(3)添加目标函数
MyProbLP += 2*x1 + 3*x2 - 5*x3 # 设置目标函数
添加目标函数使用 “问题名 += 目标函数式” 格式。
-(4)添加约束条件
MyProbLP += (2*x1 - 5*x2 + x3 >= 10) # 不等式约束
MyProbLP += (x1 + 3*x2 + x3 <= 12) # 不等式约束
MyProbLP += (x1 + x2 + x3 == 7) # 等式约束
添加约束条件使用 “问题名 += 约束条件表达式” 格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<=“和”=="。
-(5)求解
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status]) # 输出求解状态
for v in MyProbLP.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F(x) = ", pulp.value(MyProbLP.objective)) #输出最优解的目标函数值
solve() 是求解函数。PuLP默认采用 CBC 求解器来求解优化问题,也可以调用其它的优化器来求解,如:GLPK,COIN CLP/CBC,CPLEX,和GUROBI,但需要另外安装。
完整的程序代码如下:
import pulp
MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
x1 = pulp.LpVariable('x1', lowBound=0, upBound=7, cat='Continuous')
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Continuous')
x3 = pulp.LpVariable('x3', lowBound=0, upBound=7, cat='Continuous')
MyProbLP += 2*x1 + 3*x2 - 5*x3
MyProbLP += (2*x1 - 5*x2 + x3 >= 10)
MyProbLP += (x1 + 3*x2 + x3 <= 12)
MyProbLP += (x1 + x2 + x3 == 7)
MyProbLP.solve()
print("Status:", pulp.LpStatus[MyProbLP.status])
for v in MyProbLP.variables():
print(v.name, "=", v.varValue)
print("F(x) = ", pulp.value(MyProbLP.objective))
程序运行结果如下:
Welcome to the CBC MILP Solver
Version: 2.9.0
Build Date: Feb 12 2015
Status: Optimal
x1 = 6.4285714
x2 = 0.57142857
x3 = 0.0
F(x) = 14.57142851
关注 Youcans,分享原创系列 https://blog.csdn.net/youcans
Python数模笔记-PuLP库(1)线性规划入门
Python数模笔记-PuLP库(2)线性规划进阶
Python数模笔记-PuLP库(3)线性规划实例
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题
Python学习笔记-PuLP库(1)线性规划入门1、什么是线性规划线性规划(Linear programming),在线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。例如:max fx = 2*x1 + 3*x2 - 5*x3s.t. x1 + 3*x2 + x3 <= 12 2*x1 - 5*x2 + x3 >= 10 x1 + x2 + x3 = 7 x1, x2, x3 >=0线性规划问题的建模和求解,通常
1、基于字典的创建规划问题
上篇中介绍了使用 LpVariable 对逐一定义每个决策变量,设定名称、类型和上下界,类似地对约束条件也需要逐一设置模型参数。在大规模的规划问题中,这样逐个定义变量和设置模型参数非常繁琐,效率很低。Pulp 库提供了一种快捷方式,可以结合 Python语言的循环和容器,使用字典来创建问题。
(1)使用快捷方法建立一个规划问题,可以用字典类型(dict) 建立多个变量,例如:
name = [‘废料1’, ‘废料2’,
文章目录1 PuLP介绍1.1 理论、流程介绍1.2 主函数介绍1.2.1 LpProblem类1.2.2 LpVariable类1.2.3 lpSum(vector)1.3 一些函数写法优化1.3.1 赋值1.3.2 PuLP里面不可使用的案例一:优化投放广告渠道的资源案例二:如何分配水库供水量,公司才能获利最多案例三: 求解最普通的线性规划问题案例四:运输问题案例五:指派问题
1 PuLP介绍
1.1 理论、流程介绍
线性规划是研究线性约束条件下线性目标函数的极值问题的数学理论和方法。Pytho.
某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
(1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
(2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(3)若每百箱甲饮料获利可增加1万元,是否应否改变生产计划?
.plop {opacity: .5;}.plup {height: 12px;}
最终CSS将被包装在您的容器中
#app .plop {opacity: .5;}#app .plup {height: 12px;}
const WebpackCSSWrapperPlugin = require('@coorpacademy/css-wrapper-webpack-plugin');
然后在您的webpack插件中:
plugins: [
new ExtractTextWebpackPlugin('styles.css'),
new WebpackCSSWrapperPlugin('styles.css', '#app')
数学建模Python之建模规划篇线性规划介绍线性规划的实例与定义线性规划问题的解的概念求解线性规划的Matlab 解法Python Scipy库实现Python plup库实现十分有趣的例子
由于美国大学生数学建模大赛很快就要开赛了,所以我就打算在这几天内,好好的看看《数学建模算法与应用》这本书,里面很多都是用matlab实现的,我还想尝试着用python去实现它的算法
Python之建模规划篇
在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成