1.
Hsieh J.
Computed Tomography: Principles, Design, Artifacts, and RecentAdvances.
Bellingham, WA: SPIE PRESS; 2015.
[
Google Scholar
]
2.
Madmad T, Delinte N, De Vleeschouwer C. CNN-based morphological decomposition of X-ray images for details and defects contrast enhancement[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 19-25, 2021, Nashville, TN, USA. IEEE, 2021: 2170-80.
3.
Lin WS, Ghinea G. Progress and opportunities in modelling justnoticeable difference (JND) for multimedia.
IEEE Trans Multimed.
2022;
24
:3706–21. doi: 10.1109/TMM.2021.3106503.
[
CrossRef
]
[
Google Scholar
]
4.
Mandell JC, Khurana B, Folio LR, et al. Clinical applications of a CT window blending algorithm: radio (relative attenuation-dependent image overlay)
J Digit Imaging.
2017;
30
(3):358–68. doi: 10.1007/s10278-017-9941-1.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
A, Snoeckx Lesion detection on a combined "All-in-One" window compared to conventional window settings in thoracic oncology chest CT examinations.
Diagn Interv Imaging.
2020;
101
(1):25–33. doi: 10.1016/j.diii.2019.07.009.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Abdellatif W, Vasan V, Kay FU, et al. Know your way around acute unenhanced CT during global iodinated contrast crisis: a refresher to ED radiologists.
Emerg Radiol.
2022;
29
(6):1019–31. doi: 10.1007/s10140-022-02085-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Lehr JL, Capek P. Histogram equalization of CT images.
Radiology.
1985;
154
(1):163–9. doi: 10.1148/radiology.154.1.3964935.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equalization and its variations.
Comput Vis Graph Image Process.
1987;
39
(3):355–68. doi: 10.1016/S0734-189X(87)80186-X.
[
CrossRef
]
[
Google Scholar
]
9.
Fayad LM, Jin YP, Laine AF, et al. Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Radiology.
2002;
223
(3):845–52. doi: 10.1148/radiol.2233010943.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Mi ng, Ze ng. Improving histogram-based image contrast enhancement using gray-level information histogram with application to Xray images.
Optik.
2012;
123
(6):511–20. doi: 10.1016/j.ijleo.2011.05.017.
[
CrossRef
]
[
Google Scholar
]
11.
Mary Shyni H, Chitra E. A comparative study of X-ray and ct images in covid-19 detection using image processing and deep learning techniques.
Comput Methods Programs Biomed Update.
2022;
2
:100054. doi: 10.1016/j.cmpbup.2022.100054.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Figueiro Longo MG, Vuylsteke P, Tan CO, et al. "All-in-one"window/level whole-body computed tomography scan-A faster way to evaluate trauma cases.
Am J Emerg Med.
2022;
62
:62–8. doi: 10.1016/j.ajem.2022.09.047.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
马铭君. 基于深度学习的医学CT图像中器官与病灶分割算法研究[D]. 桂林: 广西师范大学, 2022.
14.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
15.
Çiçek Ö, Abdulkadir A, Lienkamp SS, et al. 3D U-net: learning dense volumetric segmentation from sparse annotation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part Ⅱ. New York: ACM, 2016: 424-32.
16.
Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. UNet++: a nested Unet architecture for medical image segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018)
2018;
11045
:3–11.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
17.
Ma MJ, Xia HY, Tan YM, et al. HT-Net: hierarchical contextattention transformer network for medical ct image segmentation.
Appl Intell.
2022;
52
(9):10692–705. doi: 10.1007/s10489-021-03010-0.
[
CrossRef
]
[
Google Scholar
]
18.
Wang RS, Lei T, Cui RX, et al. Medical image segmentation using deep learning: a survey.
IET Image Process.
2022;
16
(5):1243–67. doi: 10.1049/ipr2.12419.
[
CrossRef
]
[
Google Scholar
]
19.
Aljabri M, AlGhamdi M. A review on the use of deep learning for medical images segmentation.
Neurocomputing.
2022;
506
:311–35. doi: 10.1016/j.neucom.2022.07.070.
[
CrossRef
]
[
Google Scholar
]
20.
Islam M, Khan KN, Khan MS. Evaluation of preprocessing techniques for U-net based automated liver segmentation[C]//2021 International Conference on Artificial Intelligence (ICAI). April 5-7, 2021, Islamabad, Pakistan. IEEE, 2021: 187-92.
21.
Heidarian S, Afshar P, Enshaei N, et al. Wso-caps: diagnosis of lung infection from low and ultra-lowdose CT scans using capsule networks and windowsetting optimization[C]//2021 IEEE International Conference on Autonomous Systems (ICAS). August 11-13, 2021, Montreal, QC, Canada. IEEE, 2021: 1-5.
22.
Berman M, Triki AR, Blaschko MB. The lovasz-softmax loss: a tractable surrogate for the optimization of the intersection-overunion measure in neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 4413-21.
23.
Shibata T, Tanaka M, Okutomi M. Gradient-domain image reconstruction framework with intensity-range and base-structure constraints[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 2745-53.
24.
Khan IR, Rahardja S, Khan MM, et al. A tone-mapping technique based on histogram using a sensitivity model of the human visual system.
IEEE Trans Ind Electron.
2018;
65
(4):3469–79. doi: 10.1109/TIE.2017.2760247.
[
CrossRef
]
[
Google Scholar
]
25.
Liang ZT, Xu J, Zhang D, et al. A hybrid l1-l0 layer decomposition model for tone mapping[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 4758-66.
26.
Mehmood A, Khan IR, Dawood H, et al. A non-uniform quantization scheme for visualization of CT images.
Math Biosci Eng.
2021;
18
(4):4311–26. doi: 10.3934/mbe.2021216.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Al-Ameen Z, Sulong G, Johar G. Enhancing the contrast of CT medical images by employing a novel image size dependent normalization technique.
Int J Biosci Biotechnol.
2012;
4
(3):63–8.
[
Google Scholar
]
28.
Yu Han. A new image fusion performance metric based on visual information fidelity.
Inf Fusion.
2013;
14
(2):127–35. doi: 10.1016/j.inffus.2011.08.002.
[
CrossRef
]
[
Google Scholar
]
29.
Xydeas CS, Petrović V. Objective image fusion performance measure.
Electron Lett.
2000;
36
(4):308. doi: 10.1049/el:20000267.
[
CrossRef
]
[
Google Scholar
]
30.
Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation"[EB/OL]. 2021: arXiv: 2102.04306.
https://arxiv.org/abs/2102.04306
".
31.
Huang XH, Deng ZF, Li DD, et al. MISSFormer: an effective transformer for 2D medical image segmentation.
IEEE Trans Med Imaging.
2022;
PP
(99):1.
[
PubMed
]
[
Google Scholar
]
32.
Li ZH, Li DH, Xu CB, et al. TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation[C]//International Conference on Artificial Neural Networks. Cham: Springer, 2022: 781-92.
33.
Yang S, Kim EY, Ye JC. Continuous conversion of CT kernel using switchable CycleGAN with AdaIN.
IEEE Trans Med Imaging.
2021;
40
(11):3015–29. doi: 10.1109/TMI.2021.3077615.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
Higashigaito K, Fischer G, Jungblut L, et al. Comparison of detection of trauma-related injuries using combined "all-in-one" fused images and conventionally reconstructed images in acute trauma CT.
Eur Radiol.
2022;
32
(6):3903–11. doi: 10.1007/s00330-021-08473-w.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]