摘要:

采用ReaxFF反应分子动力学方法研究了不同压缩态 β -HMX晶体( ρ =1.89、2.11、2.22、2.46、2.80、3.20 g·cm -3 )在 T =2500 K时的热分解机理, 分析了压力对初级和次级化学反应速率的影响、高压与低压下初始分解机理的区别以及造成反应机理发生变化的原因. 发现HMX的初始分解机理与压力(或密度)相关. 低压下( ρ <2.80 g·cm -3 )以分子内反应为主, 即N-NO 2 键的断裂、HONO的生成以及分子主环的断裂(C-N键的断裂). 高压下( ρ ≥2.80 g·cm -3 )分子内反应被显著地抑制, 而分子间反应得到促进, 生成了较多的O 2 、HO等小分子和大分子团簇. 初始分解机理随压力的变化导致不同密度下的反应速率和势能也有所不同. 本文在原子水平对高压下HMX反应机理的深入研究对于认识含能材料在极端条件下的起爆、化学反应的发展以及爆轰等具有重要意义.

Abstract:

The thermal decomposition mechanisms of condensed phase β -HMX at various densities ( ρ = 1.89, 2.11, 2.22, 2.46, 2.80, 3.20 g·cm -3 ) and at 2500 K were studied using ReaxFF reactive molecular dynamics simulations. The effects of pressure on the initial and secondary reaction rates, the main differences in the initial decomposition mechanisms between highly compressed and less compressed systems, as well as the reasons for these variations were analyzed. It was determined that the initial decomposition mechanisms of HMX were dependent on pressure (or density). At low densities ( ρ <2.80 g· cm -3 ), intramolecular reactions are dominant, these being N-NO 2 bond dissociation, HONO elimination, and concerted ring fission by C-N bond scission. At high densities ( ρ ≥2.80 g·cm -3 ), intramolecular reactions are well restrained, whereas intermolecular reactions are promoted, leading to the formation of small molecules, such as O 2 and HO, and large molecular clusters. These changes in the initial decomposition mechanisms lead to different kinetic and energetic behaviors, as well as variations in the distribution of products. These results obtained through this work are significant in that they assist in understanding the chemical reactions involved in the initiation, reaction development, and detonation of energetic materials under extreme conditions.

Key words: Thermal decomposition, Pressure, ReaxFF, Molecular dynamics

导出引用管理器 EndNote (中文内容) | EndNote (英文内容) | Reference Manager | ProCite | BibTeX | RefWorks

链接本文: https://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201208031

(1) Lewis, J. P.; Glaesemann, K. R.; VanOpdorp, K.; Voth, G. A. J. Phys. Chem. A 2000, 104 , 11384. doi: 10.1021/jp002173g (2) Chakraborty, D.; Muller, R. P.; Goddard,W. A., III. J. Phys. Chem. A 2001, 105 , 1302. doi: 10.1021/jp0026181 (3) Sharia, O.; Kuklja, M. M. J. Phys. Chem. B 2011, 115 , 12677. (4) Jiang, F. L.; Zhai, G. H.; Ding, L.; Yue, K. F.; Liu, N.; Shi, Q.Z.;Wen, Z. Y. Acta Phys. -Chim. Sin. 2010, 26 , 409. [姜富灵,翟高红, 丁黎, 岳可芬, 刘妮, 史启祯, 文振翼. 物理化学学报, 2010, 26 , 409.] doi: 10.3866/PKU.WHXB20100128 (5) Brill, T. B. J. Prop. Power 1995, 11 , 740. doi: 10.2514/3.23899 (6) Tang, C. J.; Lee, Y. J.; Litzinger, T. A. J. Prop. Power 1999, 15 ,296. doi: 10.2514/2.5427 (7) Tarver, C. M.; Chidester, S. K.; Nichols, A. L. J. Phys. Chem. 1996, 100 , 5794. doi: 10.1021/jp953123s (8) Gilman, J. J. Phil. Maga. B 1995, 71 (6), 1057. doi: 10.1080/01418639508241895 (9) Gilman, J. J. Phil. Maga. B 1993, 67 (2), 207. doi: 10.1080/13642819308207868 (10) Margetis, D.; Kaxiras, E.; Elstner, M.; Frauenheim, T.; Manaa,M. R. J. Chem. Phys. 2002, 117 (2), 788. doi: 10.1063/1.1466830 (11) Manaa, M. R. Appl. Phys. Lett . 2003, 83 (7), 1352. doi: 10.1063/1.1603351 (12) Lu, L. Y.;Wei, D. Q.; Chen, X. R.; Lian, D.; Ji, G. F.; Zhang, Q.M.; Gong, Z. Z. Mol. Phys. 2008, 106 , 2569. doi: 10.1080/00268970802616343 (13) Kuklja, M. M.; Rashkeev, S. N.; Zerilli, F. J. Appl. Phys. Lett. 2006, 89 (7), 71904. doi: 10.1063/1.2335680 (14) Kuklja, M. M.; Rashkeev, S. N. Phys. Rev. B 2007, 75 (10),104111. doi: 10.1103/PhysRevB.75.104111 (15) Manaa, M. R.; Fried, L. E.; Melius, C. F.; Elstner, M.;Frauenheim, T. J. Phys. Chem. A 2002, 106 (39), 9024. doi: 10.1021/jp025668+ (16) Manaa, M. R.; Fried, L. E.; Reed, E. J. J. Computer-Aided Materials Design 2003, 10 (2), 75. doi: 10.1023/B:JCAD.0000036812.64349.15 (17) Zhu,W. H.; Huang, H.; Huang, H. J.; Xiao, H. M. J. Chem. Phys. 2012, 136 , 044516. doi: 10.1063/1.3679384 (18) van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A 2001, 105 (41), 9396. (19) Rom, N.; Zybin, S. V.; van Duin, A. C. T.; Goddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115 ,10181. doi: 10.1021/jp202059v (20) Zhang, L. Z.; Sergey, V. Z.; van Duin, A. C. T.; Siddharth, D.;Goddard,W. A., III. J. Phys. Chem. A 2009, 113 , 10619. (21) Strachan, A.; Kober, E. M.; van Duin, A. C. T.; Oxgaard, J.;Goddard,W. A., III. J. Chem. Phys. 2005, 122 (5), 54502. doi: 10.1063/1.1831277 (22) Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.;Goddard,W. A., III. Phys. Rev. Lett. 2003, 91 (9), 098301. doi: 10.1103/PhysRevLett.91.098301 (23) Zybin, S. V.; Goddard,W. A., III; Xu, P.; van Duin, A. C. T.; Appl. Phys. Lett . 2010, 96 , 081918. doi: 10.1063/1.3323103 (24) An, Q.; Liu, Y.; Zybin, S. V.; Kim, H.; Goddard,W. A., III. J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m (25) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; Goddard,W. A.,III. J. Appl. Phys. 2012, 111 (12), 124904. doi: 10.1063/1.4729114 (26) Choi, C. S.; Boutin, H. P. Acta Crystallogr. B 1970, 26 , 1235. (27) Yoo, C. S.; Cynn, H. J. Chem. Phys . 1999, 111 (22), 10229. doi: 10.1063/1.480341 (28) Goto, N.; Fujihisa, H.; Yamawaki, H. J. Phys. Chem. B 2006, 110 , 23655. doi: 10.1021/jp0635359

朱迎迎, 王勇, 徐淼, 吴勇民, 汤卫平, 朱地, 何雨石, 马紫峰, 李林森. 追踪锂金属负极的压力与形貌变化 [J]. 物理化学学报, 2023, 39(1): 2110040 -0 . 马骋, 窦翔宇, 刘泽宇, 廖培龙, 朱志扬, 刘卡尔顿, 黄建滨. 一种新型CO 2 /原油助混剂CAA8-X的应用与助混机理 [J]. 物理化学学报, 2022, 38(8): 2012019 - . 俞宏伟, 李实, 李金龙, 朱韶华, 孙成珍. 气驱油油气混相过程的界面传质特性及其分子机制 [J]. 物理化学学报, 2022, 38(5): 2006061 - . 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟 [J]. 物理化学学报, 2022, 38(5): 2006064 - . 曹冲, 张裴, 曹立冬, 刘铭鑫, 宋玉莹, 陈鹏, 黄啟良, 韩布兴. 液滴在超疏水植物叶面的沉积:实验和分子动力学模拟 [J]. 物理化学学报, 2022, 38(12): 2207006 - . 李孟婷, 郑星群, 李莉, 魏子栋. 碱性介质中氢氧化和析氢反应机理研究现状 [J]. 物理化学学报, 2021, 37(9): 2007054 - . 陈文琼, 关永吉, 张姣, 裴俊捷, 张晓萍, 邓友全. 外电场作用下离子液体振动光谱变化的分子动力学模拟研究 [J]. 物理化学学报, 2021, 37(10): 2001004 - . 唐钰杰, 郑默, 任春醒, 李晓霞, 郭力. ReaxFF MD局部区域反应追踪与物理性质可视化分析 [J]. 物理化学学报, 2021, 37(10): 2003037 - . 张明, 赵凤起, 杨燕京, 李辉, 张建侃, 马文喆, 高红旭, 李娜. 两种形貌纳米Fe 2 O 3 对TKX-50热分解的催化性能研究 [J]. 物理化学学报, 2020, 36(6): 1904027 - . 张婷,李翠翠,王伟,郭兆琦,庞爱民,马海霞. 三维氧化铁/石墨烯的构建及其对CL-20的热分解性能的影响 [J]. 物理化学学报, 2020, 36(6): 1905048 - . 苗静,郭睿凤,刘志宏. BaO∙4B 2 O 3 ∙5H 2 O纳米材料的制备及其对聚丙烯阻燃性能的热分解动力学方法评价 [J]. 物理化学学报, 2020, 36(6): 1905052 - . 乔成芳,吕磊,许文风,夏正强,周春生,陈三平,高胜利. 三维无溶剂含能Ag-MOF的制备、热分解动力学及爆炸性能 [J]. 物理化学学报, 2020, 36(6): 1905085 - . 孙成珍, 周润峰, 白博峰. 基于静电效应的石墨烯纳米孔选择性渗透特性 [J]. 物理化学学报, 2020, 36(11): 1911044 - . 张涛,仇运广,罗启超,程曦,赵丽芬,严昕,彭浡,蒋华良,阳怀宇. 钙离子和镁离子浓度变化对磷脂酰乙醇胺-磷脂酰甘油双分子层膜的影响 [J]. 物理化学学报, 2019, 35(8): 840 -849 . 刘海,李毅,马兆侠,周智炫,李俊玲,何远航. 定常冲击波作用下六硝基六氮杂异伍兹烷(CL-20)/奥克托今(HMX)含能共晶初始分解机理研究 [J]. 物理化学学报, 2019, 35(8): 858 -867 .