本文转自:http://senlinzhan.github.io/2017/09/17/boost-asio/
Boost.Asio 有两种支持多线程的方式,第一种方式比较简单:在多线程的场景下,每个线程都持有一个
io_service
,并且每个线程都调用各自的
io_service
的
run()
方法。
另一种支持多线程的方式:全局只分配一个
io_service
,并且让这个
io_service
在多个线程之间共享,每个线程都调用全局的
io_service
的
run()
方法。
每个线程一个 I/O Service
让我们先分析第一种方案:在多线程的场景下,每个线程都持有一个
io_service
(通常的做法是,让线程数和 CPU 核心数保持一致)。那么这种方案有什么特点呢?
在多核的机器上,这种方案可以充分利用多个 CPU 核心。
某个 socket 描述符
并不会
在多个线程之间共享,所以不需要引入同步机制。
在 event handler 中不能执行阻塞的操作,否则将会阻塞掉
io_service
所在的线程。
下面我们实现了一个
AsioIOServicePool
,封装了线程池的创建操作
[完整代码]
:
class AsioIOServicePool
public:
using IOService = boost::asio::io_service;
using Work = boost::asio::io_service::work;
using WorkPtr = std::unique_ptr<Work>;
AsioIOServicePool(std::size_t size = std::thread::hardware_concurrency())
: ioServices_(size),
works_(size),
nextIOService_(0)
for (std::size_t i = 0; i < size; ++i)
works_[i] = std::unique_ptr<Work>(new Work(ioServices_[i]));
for (std::size_t i = 0; i < ioServices_.size(); ++i)
threads_.emplace_back([this, i] ()
ioServices_[i].run();
AsioIOServicePool(const AsioIOServicePool &) = delete;
AsioIOServicePool &operator=(const AsioIOServicePool &) = delete;
// 使用 round-robin 的方式返回一个 io_service
boost::asio::io_service &getIOService()
auto &service = ioServices_[nextIOService_++];
if (nextIOService_ == ioServices_.size())
nextIOService_ = 0;
return service;
void stop()
for (auto &work: works_)
work.reset();
for (auto &t: threads_)
t.join();
private:
std::vector<IOService> ioServices_;
std::vector<WorkPtr> works_;
std::vector<std::thread> threads_;
std::size_t nextIOService_;
AsioIOServicePool
使用起来也很简单:
std::mutex mtx; // protect std::cout
AsioIOServicePool pool;
boost::asio::steady_timer timer{pool.getIOService(), std::chrono::seconds{2}};
timer.async_wait([&mtx] (const boost::system::error_code &ec)
std::lock_guard<std::mutex> lock(mtx);
std::cout << "Hello, World! " << std::endl;
pool.stop();
一个 I/O Service 与多个线程
另一种方案则是先分配一个全局io_service
,然后开启多个线程,每个线程都调用这个io_service
的run()
方法。这样,当某个异步事件完成时,io_service
就会将相应的 event handler 交给任意一个线程去执行。
然而这种方案在实际使用中,需要注意一些问题:
在 event handler 中允许执行阻塞的操作 (例如数据库查询操作)。
线程数可以大于 CPU 核心数,譬如说,如果需要在 event handler 中执行阻塞的操作,为了提高程序的响应速度,这时就需要提高线程的数目。
由于多个线程同时运行事件循环(event loop),所以会导致一个问题:即一个 socket 描述符可能会在多个线程之间共享,容易出现竞态条件 (race condition)。譬如说,如果某个 socket 的可读事件很快发生了两次,那么就会出现两个线程同时读同一个 socket 的问题 (可以使用strand
解决这个问题)。
下面实现了一个线程池,在每个 worker 线程中执行io_service
的run()
方法 [完整代码]:
class AsioThreadPool
public:
AsioThreadPool(int threadNum = std::thread::hardware_concurrency())
: work_(new boost::asio::io_service::work(service_))
for (int i = 0; i < threadNum; ++i)
threads_.emplace_back([this] () { service_.run(); });
AsioThreadPool(const AsioThreadPool &) = delete;
AsioThreadPool &operator=(const AsioThreadPool &) = delete;
boost::asio::io_service &getIOService()
return service_;
void stop()
work_.reset();
for (auto &t: threads_)
t.join();
private:
boost::asio::io_service service_;
std::unique_ptr<boost::asio::io_service::work> work_;
std::vector<std::thread> threads_;
无锁的同步方式
要怎样解决前面提到的竞态条件呢?Boost.Asio 提供了io_service::strand
:如果多个 event handler 通过同一个 strand 对象分发 (dispatch),那么这些 event handler 就会保证顺序地执行。
例如,下面的例子使用 strand,所以不需要使用互斥锁保证同步了 [完整代码]:
AsioThreadPool pool(4); // 开启 4 个线程
boost::asio::steady_timer timer1{pool.getIOService(), std::chrono::seconds{1}};
boost::asio::steady_timer timer2{pool.getIOService(), std::chrono::seconds{1}};
int value = 0;
boost::asio::io_service::strand strand{pool.getIOService()};
timer1.async_wait(strand.wrap([&value] (const boost::system::error_code &ec)
std::cout << "Hello, World! " << value++ << std::endl;
timer2.async_wait(strand.wrap([&value] (const boost::system::error_code &ec)
std::cout << "Hello, World! " << value++ << std::endl;
pool.stop();
多线程 Echo Server
下面的EchoServer
可以在多线程中使用,它使用asio::strand
来解决前面提到的竞态问题 [完整代码]:
class TCPConnection : public std::enable_shared_from_this<TCPConnection>
public:
TCPConnection(boost::asio::io_service &io_service)
: socket_(io_service),
strand_(io_service)
tcp::socket &socket() { return socket_; }
void start() { doRead(); }
private:
void doRead()
auto self = shared_from_this();
socket_.async_read_some(
boost::asio::buffer(buffer_, buffer_.size()),
strand_.wrap([this, self](boost::system::error_code ec,
std::size_t bytes_transferred)
if (!ec) { doWrite(bytes_transferred); }
void doWrite(std::size_t length)
auto self = shared_from_this();
boost::asio::async_write(
socket_, boost::asio::buffer(buffer_, length),
strand_.wrap([this, self](boost::system::error_code ec,
std::size_t /* bytes_transferred */)
if (!ec) { doRead(); }
private:
tcp::socket socket_;
boost::asio::io_service::strand strand_;
std::array<char, 8192> buffer_;
class EchoServer
public:
EchoServer(boost::asio::io_service &io_service, unsigned short port)
: io_service_(io_service),
acceptor_(io_service, tcp::endpoint(tcp::v4(), port))
doAccept();
void doAccept()
auto conn = std::make_shared<TCPConnection>(io_service_);
acceptor_.async_accept(conn->socket(),
[this, conn](boost::system::error_code ec)
if (!ec) { conn->start(); }
this->doAccept();
private:
boost::asio::io_service &io_service_;
tcp::acceptor acceptor_;
The Boost C++ Libraries Chapter 32. Boost.Asio
A guide to getting started with boost::asio
Strands: Use Threads Without Explicit Locking
Post on ASIO strand
How strands guarantee correct execution of pending events in boost.asio
asio C++ library
Using Asio with C++11
最近尝试使用了一下Boost.Asio,不知道是否因为各大公司都有自己相对成熟的网络库的缘故,网络上Asio相关的资料实在不多,而且很多翻来覆去就是那几个简单的示例,所以打算自己小结一下。
一、io_service的作用
io_servie 实现了一个任务队列,这里的任务就是void(void)的函数。Io_servie最常用的两个接口是post和run,post向任务队列中投递任务,run是执行队列中的任务,直到全部执行完毕,并且run可以被N个线程调用。
io_service类
你应该已经发现大部分使用Boost.Asio编写的代码都会使用几个io_service的实例。io_service是这个库里面最重要的类;它负责和操作系统打交道,等待所有异步操作的结束,然后为每一个异步操作调用其完成处理程序。
boost boost::asio::read socket.read_some 区别
boost boost::asio::read 尝试读一定数量的字节,直到读到为止,或者出错
socket.read_some 读一下socket,读到多少算多少
带async的类似