Python可视化 | WRF模式模拟数据后处理(二)
郭好奇同学
发布
于
2021-08-26 17:35:27
发布
于
2021-08-26 17:35:27
文章被收录于专栏:
好奇心Log
导入模块
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
from matplotlib.colors import from_levels_and_colors
import cartopy.crs as crs
import cartopy.feature as cfeature
from cartopy.feature import NaturalEarthFeature
from wrf import to_np, getvar, interplevel, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords, vertcross, smooth2d, CoordPair, GeoBounds,interpline
import warnings
warnings.filterwarnings('ignore')
读取数据
wrf_file = '../input/wrf3880/wrfout_d01_2016-10-07_00_00_00_subset.nc'
# Open the NetCDF file
ncfile = Dataset(wrf_file)
绘制海平面气压场
# Get the sea level pressure
slp = getvar(ncfile, "slp")
# Smooth the sea level pressure since it tends to be noisy near the
# mountains
smooth_slp = smooth2d(slp, 3, cenweight=4)
# Get the latitude and longitude points
lats, lons = latlon_coords(slp)
# Get the cartopy mapping object
cart_proj = get_cartopy(slp)
# Create a figure
fig = plt.figure(figsize=(12,6))
# Set the GeoAxes to the projection used by WRF
ax = plt.axes(projection=cart_proj)
# Download and add the states and coastlines
states = NaturalEarthFeature(category="cultural", scale="50m",
facecolor="none",
name="admin_1_states_provinces_shp")
ax.add_feature(states, linewidth=.5, edgecolor="black")
ax.coastlines('50m', linewidth=0.8)
# Make the contour outlines and filled contours for the smoothed sea level
# pressure.
plt.contour(to_np(lons), to_np(lats), to_np(smooth_slp), 10, colors="black",
transform=crs.PlateCarree())
plt.contourf(to_np(lons), to_np(lats), to_np(smooth_slp), 10,
transform=crs.PlateCarree(),
cmap=get_cmap("jet"))
# Add a color bar
plt.colorbar(ax=ax, shrink=.98)
# Set the map bounds
ax.set_xlim(cartopy_xlim(smooth_slp))
ax.set_ylim(cartopy_ylim(smooth_slp))
# Add the gridlines
ax.gridlines(color="black", linestyle="dotted")
plt.title("Sea Level Pressure (hPa)")
plt.show()
绘制500hPa位视高度和风场
# Extract the pressure, geopotential height, and wind variables
p = getvar(ncfile, "pressure")
z = getvar(ncfile, "z", units="dm")
ua = getvar(ncfile, "ua", units="kt")
va = getvar(ncfile, "va", units="kt")
wspd = getvar(ncfile, "wspd_wdir", units="kts")[0,:]
# Interpolate geopotential height, u, and v winds to 500 hPa
ht_500 = interplevel(z, p, 500)
u_500 = interplevel(ua, p, 500)
v_500 = interplevel(va, p, 500)
wspd_500 = interplevel(wspd, p, 500)
# Get the lat/lon coordinates
lats, lons = latlon_coords(ht_500)
# Get the map projection information
cart_proj = get_cartopy(ht_500)
# Create the figure
fig = plt.figure(figsize=(12,9))
ax = plt.axes(projection=cart_proj)
# Download and add the states and coastlines
states = NaturalEarthFeature(category="cultural", scale="50m",
facecolor="none",
name="admin_1_states_provinces_shp")
ax.add_feature(states, linewidth=0.5, edgecolor="black")
ax.coastlines('50m', linewidth=0.8)
# Add the 500 hPa geopotential height contours
levels = np.arange(520., 580., 6.)
contours = plt.contour(to_np(lons), to_np(lats), to_np(ht_500),
levels=levels, colors="black",
transform=crs.PlateCarree())
plt.clabel(contours, inline=1, fontsize=10, fmt="%i")
# Add the wind speed contours
levels = [25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120]
wspd_contours = plt.contourf(to_np(lons), to_np(lats), to_np(wspd_500),
levels=levels,
cmap=get_cmap("rainbow"),
transform=crs.PlateCarree())
plt.colorbar(wspd_contours, ax=ax, orientation="horizontal", pad=.05)
# Add the 500 hPa wind barbs, only plotting every 125th data point.
plt.barbs(to_np(lons[::125,::125]), to_np(lats[::125,::125]),
to_np(u_500[::125, ::125]), to_np(v_500[::125, ::125]),
transform=crs.PlateCarree(), length=6)
# Set the map bounds
ax.set_xlim(cartopy_xlim(ht_500))
ax.set_ylim(cartopy_ylim(ht_500))
ax.gridlines()
plt.title("500 MB Height (dm), Wind Speed (kt), Barbs (kt)")
plt.show()
绘制经向剖面图
# Get the WRF variables
slp = getvar(ncfile, "slp")
smooth_slp = smooth2d(slp, 3)
ctt = getvar(ncfile, "ctt")
z = getvar(ncfile, "z")
dbz = getvar(ncfile, "dbz")
Z = 10**(dbz/10.)
wspd = getvar(ncfile, "wspd_wdir", units="kt")[0,:]
# Set the start point and end point for the cross section
start_point = CoordPair(lat=26.76, lon=-80.0)
end_point = CoordPair(lat=26.76, lon=-77.8)
# Compute the vertical cross-section interpolation. Also, include the
# lat/lon points along the cross-section in the metadata by setting latlon
# to True.
z_cross = vertcross(Z, z, wrfin=ncfile, start_point=start_point,
end_point=end_point, latlon=True, meta=True)
wspd_cross = vertcross(wspd, z, wrfin=ncfile, start_point=start_point,
end_point=end_point, latlon=True, meta=True)
dbz_cross = 10.0 * np.log10(z_cross)
# Get the lat/lon points
lats, lons = latlon_coords(slp)
# Get the cartopy projection object
cart_proj = get_cartopy(slp)
# Create a figure that will have 3 subplots
fig = plt.figure(figsize=(12,9))
ax_ctt = fig.add_subplot(1,2,1,projection=cart_proj)
ax_wspd = fig.add_subplot(2,2,2)
ax_dbz = fig.add_subplot(2,2,4)
# Download and create the states, land, and oceans using cartopy features
states = cfeature.NaturalEarthFeature(category='cultural', scale='50m',
facecolor='none',
name='admin_1_states_provinces_shp')
land = cfeature.NaturalEarthFeature(category='physical', name='land',
scale='50m',
facecolor=cfeature.COLORS['land'])
ocean = cfeature.NaturalEarthFeature(category='physical', name='ocean',
scale='50m',
facecolor=cfeature.COLORS['water'])
# Make the pressure contours
contour_levels = [960, 965, 970, 975, 980, 990]
c1 = ax_ctt.contour(lons, lats, to_np(smooth_slp), levels=contour_levels,
colors="white", transform=crs.PlateCarree(), zorder=3,
linewidths=1.0)
# Create the filled cloud top temperature contours
contour_levels = [-80.0, -70.0, -60, -50, -40, -30, -20, -10, 0, 10]
ctt_contours = ax_ctt.contourf(to_np(lons), to_np(lats), to_np(ctt),
contour_levels, cmap=get_cmap("Greys"),
transform=crs.PlateCarree(), zorder=2)
ax_ctt.plot([start_point.lon, end_point.lon],
[start_point.lat, end_point.lat], color="yellow", marker="o",
transform=crs.PlateCarree(), zorder=3)
# Create the color bar for cloud top temperature
cb_ctt = fig.colorbar(ctt_contours, ax=ax_ctt, shrink=.60)
cb_ctt.ax.tick_params(labelsize=5)
# Draw the oceans, land, and states
ax_ctt.add_feature(ocean)
ax_ctt.add_feature(land)
ax_ctt.add_feature(states, linewidth=.5, edgecolor="black")
# Crop the domain to the region around the hurricane
hur_bounds = GeoBounds(CoordPair(lat=np.amin(to_np(lats)), lon=-85.0),
CoordPair(lat=30.0, lon=-72.0))
ax_ctt.set_xlim(cartopy_xlim(ctt, geobounds=hur_bounds))
ax_ctt.set_ylim(cartopy_ylim(ctt, geobounds=hur_bounds))
ax_ctt.gridlines(color="white", linestyle="dotted")
# Make the contour plot for wind speed
wspd_contours = ax_wspd.contourf(to_np(wspd_cross), cmap=get_cmap("jet"))
# Add the color bar
cb_wspd = fig.colorbar(wspd_contours, ax=ax_wspd)
cb_wspd.ax.tick_params(labelsize=5)
# Make the contour plot for dbz
levels = [5 + 5*n for n in range(15)]
dbz_contours = ax_dbz.contourf(to_np(dbz_cross), levels=levels,
cmap=get_cmap("jet"))
cb_dbz = fig.colorbar(dbz_contours, ax=ax_dbz)
cb_dbz.ax.tick_params(labelsize=5)
# Set the x-ticks to use latitude and longitude labels
coord_pairs = to_np(dbz_cross.coords["xy_loc"])
x_ticks = np.arange(coord_pairs.shape[0])
x_labels = [pair.latlon_str() for pair in to_np(coord_pairs)]
ax_wspd.set_xticks(x_ticks[::20])
ax_wspd.set_xticklabels([], rotation=45)
ax_dbz.set_xticks(x_ticks[::20])
ax_dbz.set_xticklabels(x_labels[::20], rotation=45, fontsize=4)
# Set the y-ticks to be height
vert_vals = to_np(dbz_cross.coords["vertical"])
v_ticks = np.arange(vert_vals.shape[0])
ax_wspd.set_yticks(v_ticks[::20])
ax_wspd.set_yticklabels(vert_vals[::20], fontsize=4)
ax_dbz.set_yticks(v_ticks[::20])
ax_dbz.set_yticklabels(vert_vals[::20], fontsize=4)
# Set the x-axis and y-axis labels
ax_dbz.set_xlabel("Latitude, Longitude", fontsize=5)
ax_wspd.set_ylabel("Height (m)", fontsize=5)
ax_dbz.set_ylabel("Height (m)", fontsize=5)
# Add a title
ax_ctt.set_title("Cloud Top Temperature (degC)", {"fontsize" : 7})
ax_wspd.set_title("Cross-Section of Wind Speed (kt)", {"fontsize" : 7})
ax_dbz.set_title("Cross-Section of Reflectivity (dBZ)", {"fontsize" : 7})
plt.show()
绘制山地的剖面图
# Define the cross section start and end points
cross_start = CoordPair(lat=43.5, lon=-116.5)
cross_end = CoordPair(lat=43.5, lon=-114)
# Get the WRF variables
ht = getvar(ncfile, "z", timeidx=-1)
ter = getvar(ncfile, "ter", timeidx=-1)
dbz = getvar(ncfile, "dbz", timeidx=-1)
max_dbz = getvar(ncfile, "mdbz", timeidx=-1)
Z = 10**(dbz/10.) # Use linear Z for interpolation
# Compute the vertical cross-section interpolation. Also, include the
# lat/lon points along the cross-section in the metadata by setting latlon
# to True.
z_cross = vertcross(Z, ht, wrfin=ncfile,
start_point=cross_start,
end_point=cross_end,
latlon=True, meta=True)
# Convert back to dBz after interpolation
dbz_cross = 10.0 * np.log10(z_cross)
# Add back the attributes that xarray dropped from the operations above
dbz_cross.attrs.update(z_cross.attrs)
dbz_cross.attrs["description"] = "radar reflectivity cross section"
dbz_cross.attrs["units"] = "dBZ"
# To remove the slight gap between the dbz contours and terrain due to the
# contouring of gridded data, a new vertical grid spacing, and model grid
# staggering, fill in the lower grid cells with the first non-missing value
# for each column.
# Make a copy of the z cross data. Let's use regular numpy arrays for this.
dbz_cross_filled = np.ma.copy(to_np(dbz_cross))
# For each cross section column, find the first index with non-missing
# values and copy these to the missing elements below.
for i in range(dbz_cross_filled.shape[-1]):
column_vals = dbz_cross_filled[:,i]
# Let's find the lowest index that isn't filled. The nonzero function
# finds all unmasked values greater than 0. Since 0 is a valid value
# for dBZ, let's change that threshold to be -200 dBZ instead.
first_idx = int(np.transpose((column_vals > -200).nonzero())[0])
dbz_cross_filled[0:first_idx, i] = dbz_cross_filled[first_idx, i]
# Get the terrain heights along the cross section line
ter_line = interpline(ter, wrfin=ncfile, start_point=cross_start,end_point=cross_end)
# Get the lat/lon points
lats, lons = latlon_coords(dbz)
# Get the cartopy projection object
cart_proj = get_cartopy(dbz)
# Create the figure
fig = plt.figure(figsize=(8,6))
ax_cross = plt.axes()
dbz_levels = np.arange(5., 75., 5.)
# Create the color table found on NWS pages.
dbz_rgb = np.array([[4,233,231],
[1,159,244], [3,0,244],
[2,253,2], [1,197,1],
[0,142,0], [253,248,2],
[229,188,0], [253,149,0],
[253,0,0], [212,0,0],
[188,0,0],[248,0,253],
[152,84,198]], np.float32) / 255.0
dbz_map, dbz_norm = from_levels_and_colors(dbz_levels, dbz_rgb,extend="max")
# Make the cross section plot for dbz
dbz_levels = np.arange(5.,75.,5.)
xs = np.arange(0, dbz_cross.shape[-1], 1)
ys = to_np(dbz_cross.coords["vertical"])
dbz_contours = ax_cross.contourf(xs,
to_np(dbz_cross_filled),
levels=dbz_levels,
cmap=dbz_map,
norm=dbz_norm,
extend="max")
# Add the color bar
cb_dbz = fig.colorbar(dbz_contours, ax=ax_cross)
cb_dbz.ax.tick_params(labelsize=8)
# Fill in the mountain area
ht_fill = ax_cross.fill_between(xs, 0, to_np(ter_line),
facecolor="saddlebrown")
# Set the x-ticks to use latitude and longitude labels
coord_pairs = to_np(dbz_cross.coords["xy_loc"])
x_ticks = np.arange(coord_pairs.shape[0])
x_labels = [pair.latlon_str() for pair in to_np(coord_pairs)]
# Set the desired number of x ticks below
num_ticks = 5
thin = int((len(x_ticks) / num_ticks) + .5)
ax_cross.set_xticks(x_ticks[::thin])
ax_cross.set_xticklabels(x_labels[::thin], rotation=45, fontsize=8)
# Set the x-axis and y-axis labels
ax_cross.set_xlabel("Latitude, Longitude", fontsize=12)