from
pandas.core.dtypes.common
import
is_list_like
from
pandas.errors
import
EmptyDataError
from
pandas.io.common
import
(_is_url, urlopen,
parse_url, _validate_header_arg)
from
pandas.io.parsers
import
TextParser
from
pandas.compat
import
(lrange, lmap, u, string_types, iteritems,
raise_with_traceback, binary_type)
from
pandas
import
Series
from
pandas.core.common
import
AbstractMethodError
from
pandas.io.formats.printing
import
pprint_thing
_IMPORTS
=
False
_HAS_BS4
=
False
_HAS_LXML
=
False
_HAS_HTML5LIB
=
False
def
_importers():
#
import things we need
#
but make this done on a first use basis
global
_IMPORTS
if
_IMPORTS:
return
_IMPORTS
=
True
global
_HAS_BS4, _HAS_LXML, _HAS_HTML5LIB
try
:
import
bs4
#
noqa
_HAS_BS4 =
True
except
ImportError:
try
:
import
lxml
#
noqa
_HAS_LXML =
True
except
ImportError:
try
:
import
html5lib
#
noqa
_HAS_HTML5LIB =
True
except
ImportError:
#
############
#
READ HTML #
#
############
_RE_WHITESPACE = re.compile(r
'
[\r\n]+|\s{2,}
'
)
#正则表达式,空白标示符号,换行或者两个空格
char_types
= string_types +
(binary_type,)
#转换字符串 python3中:string_types = str binary_type = bytes
def
_remove_whitespace(s, regex=
_RE_WHITESPACE):
"""
Replace extra whitespace inside of a string with a single space.
#替换字符串中多余的空白字符为一个空白字符
Parameters
----------
s : str or unicode
The string from which to remove extra whitespace.
#目标字符串
regex : regex
The regular expression to use to remove extra whitespace.
#空白字符串正则表达式
Returns
-------
subd : str or unicode
`s` with all extra whitespace replaced with a single space.
#返回替换后的字符串
return
regex.sub(
'
'
, s.strip())
def
_get_skiprows(skiprows):
"""
Get an iterator given an integer, slice or container.
#获得跳过的行
Parameters
----------
skiprows : int, slice, container
The iterator to use to skip rows; can also be a slice.
Raises
------
TypeError
* If `skiprows` is not a slice, integer, or Container
Returns
-------
it : iterable
A proper iterator to use to skip rows of a DataFrame.
#返回一个迭代器对象,用于跳过指定的行
if
isinstance(skiprows, slice):
return
lrange(skiprows.start
or
0, skiprows.stop, skiprows.step
or
1
)
elif
isinstance(skiprows, numbers.Integral)
or
is_list_like(skiprows):
return
skiprows
elif
skiprows
is
None:
return
0
raise
TypeError(
'
%r is not a valid type for skipping rows
'
%
type(skiprows).
__name__
)
def
_read(obj):
"""
Try to read from a url, file or string.
#读取,url/文件流或字符串
Parameters
----------
obj : str, unicode, or file-like
Returns
-------
raw_text : str
#返回字符串
if
_is_url(obj):
with urlopen(obj) as url:
text
=
url.read()
elif
hasattr(obj,
'
read
'
):
text
=
obj.read()
elif
isinstance(obj, char_types):
text
=
obj
try
:
if
os.path.isfile(text):
with open(text,
'
rb
'
) as f:
return
f.read()
except
(TypeError, ValueError):
else
:
raise
TypeError(
"
Cannot read object of type %r
"
% type(obj).
__name__
)
return
text
class
_HtmlFrameParser(object):
"""
Base class for parsers that parse HTML into DataFrames.
#将html转换为DataFrame的基类
Parameters
----------
io : str or file-like
This can be either a string of raw HTML, a valid URL using the HTTP,
FTP, or FILE protocols or a file-like object.
#解析的文件对象流
match : str or regex
The text to match in the document.
#正则表达式
attrs : dict
List of HTML <table> element attributes to match.
#表格属性
Attributes
----------
io : str or file-like
raw HTML, URL, or file-like object
match : regex
The text to match in the raw HTML
attrs : dict-like
A dictionary of valid table attributes to use to search for table
elements.
Notes
-----
To subclass this class effectively you must override the following methods:
#继承该类,必须重写下列方法
* :func:`_build_doc`
* :func:`_text_getter`
* :func:`_parse_td`
* :func:`_parse_tables`
* :func:`_parse_tr`
* :func:`_parse_thead`
* :func:`_parse_tbody`
* :func:`_parse_tfoot`
See each method's respective documentation for details on their
functionality.
def
__init__
(self, io, match, attrs, encoding):
self.io
=
io
self.match
=
match
self.attrs
=
attrs
self.encoding
=
encoding
def
parse_tables(self):
tables
=
self._parse_tables(self._build_doc(), self.match, self.attrs)
return
(self._build_table(table)
for
table
in
tables)
def
_parse_raw_data(self, rows):
"""
Parse the raw data into a list of lists.
#将原始数据转换为一列列表
Parameters
----------
rows : iterable of node-like
A list of row elements.
行列表
text_getter : callable
A callable that gets the text from an individual node. This must be
defined by subclasses.
从单个节点获取文本
column_finder : callable
A callable that takes a row node as input and returns a list of the
column node in that row. This must be defined by subclasses.
#将每一个行作为输入,返回一个列表包含所有的列节点。将一行数据转换为一个列表对应columns。
Returns
-------
data : list of list of strings
#返回值: data = [['1','a','b'],['2','c','d']] data[0]代表一行,data[0][0]代表该行第一列元素
data
= [[_remove_whitespace(self._text_getter(col))
for
col
in
self._parse_td(row)]
for
row
in
rows]
return
data
def
_text_getter(self, obj):
"""
Return the text of an individual DOM node.
#返回单个dom节点对应的文本
Parameters
----------
obj : node-like
A DOM node.
Returns
-------
text : str or unicode
The text from an individual DOM node.
raise
AbstractMethodError(self)
def
_parse_td(self, obj):
"""
Return the td elements from a row element.
#从行对应中提取单元格对象
Parameters
----------
obj : node-like
Returns
-------
columns : list of node-like
These are the elements of each row, i.e., the columns.
#返回值:一节列对象
raise
AbstractMethodError(self)
def
_parse_tables(self, doc, match, attrs):
"""
Return all tables from the parsed DOM.
#返回所有的表格,从dom中
Parameters
----------
doc : tree-like
The DOM from which to parse the table element.
match : str or regular expression
The text to search for in the DOM tree.
attrs : dict
A dictionary of table attributes that can be used to disambiguate
mutliple tables on a page.
Raises
------
ValueError
* If `match` does not match any text in the document.
Returns
-------
tables : list of node-like
A list of <table> elements to be parsed into raw data.
#返回doc中的table对象
raise
AbstractMethodError(self)
def
_parse_tr(self, table):
"""
Return the list of row elements from the parsed table element.
#从table中提取行对象
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
rows : list of node-like
A list row elements of a table, usually <tr> or <th> elements.
#返回值:一般为tr或th对象
raise
AbstractMethodError(self)
def
_parse_thead(self, table):
"""
Return the header of a table.
#返回表头
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
thead : node-like
A <thead>...</thead> element.
raise
AbstractMethodError(self)
def
_parse_tbody(self, table):
"""
Return the body of the table.
#返回表内容
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
tbody : node-like
A <tbody>...</tbody> element.
raise
AbstractMethodError(self)
def
_parse_tfoot(self, table):
"""
Return the footer of the table if any.
#返回表格的尾部
Parameters
----------
table : node-like
A table element that contains row elements.
Returns
-------
tfoot : node-like
A <tfoot>...</tfoot> element.
raise
AbstractMethodError(self)
def
_build_doc(self):
"""
Return a tree-like object that can be used to iterate over the DOM.
#返回一个树状对象,可以迭代DOM
Returns
-------
obj : tree-like
raise
AbstractMethodError(self)
def
_build_table(self, table):
#返回表头、表体和表尾
header
=
self._parse_raw_thead(table)
body
=
self._parse_raw_tbody(table)
footer
=
self._parse_raw_tfoot(table)
return
header, body, footer
def
_parse_raw_thead(self, table):
thead
=
self._parse_thead(table)
res
=
[]
if
thead:
trs
=
self._parse_tr(thead[0])
for
tr
in
trs:
#lmap = map
cols
=
lmap(self._text_getter, self._parse_td(tr))
if
any([col !=
''
for
col
in
cols]):
res.append(cols)
return
res
def
_parse_raw_tfoot(self, table):
tfoot
=
self._parse_tfoot(table)
res
=
[]
if
tfoot:
#lmap = map(func,iter):将func作用于iter对象,返回一个可迭代对象
res
=
lmap(self._text_getter, self._parse_td(tfoot[0]))
#np.squeeze()将长度为1的多维度去掉,如x=np.array([[[1]],[[2]],[[3]]]]) np.squeeze(x)=np.array(1,2,3)
#np.atleast_1d将np转换为至少1维,如x =np.array(1,2,3) np.atleast_1d(x)=np.array([1],[2],[3])
return
np.atleast_1d(
np.array(res).squeeze())
if
res
and
len(res) == 1
else
res
def
_parse_raw_tbody(self, table):
tbody
=
self._parse_tbody(table)
try
:
res
=
self._parse_tr(tbody[0])
except
IndexError:
res
=
self._parse_tr(table)
return
self._parse_raw_data(res)
class
_BeautifulSoupHtml5LibFrameParser(_HtmlFrameParser):
"""
HTML to DataFrame parser that uses BeautifulSoup under the hood.
#使用BeautifulSoup转换html成表格,继承_HtmlFrameParser
See Also
--------
pandas.io.html._HtmlFrameParser
pandas.io.html._LxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`pandas.io.html._HtmlFrameParser`.
def
__init__
(self, *args, **
kwargs):
super(_BeautifulSoupHtml5LibFrameParser, self).
__init__
(*
args,
**
kwargs)
from
bs4
import
SoupStrainer
#封装了许多匹配元素的方法,
self._strainer
= SoupStrainer(
'
table
'
)
def
_text_getter(self, obj):
#重写方法,返回对象文本
return
obj.text
def
_parse_td(self, row):
#在行中查找所有的td,th标签
return
row.find_all((
'
td
'
,
'
th
'
))
def
_parse_tr(self, element):
#在对象中查找所有的行标签‘tr’
return
element.find_all(
'
tr
'
)
def
_parse_th(self, element):
#在对象中找到所有的‘th’
return
element.find_all(
'
th
'
)
def
_parse_thead(self, table):
return
table.find_all(
'
thead
'
)
def
_parse_tbody(self, table):
return
table.find_all(
'
tbody
'
)
def
_parse_tfoot(self, table):
return
table.find_all(
'
tfoot
'
)
def
_parse_tables(self, doc, match, attrs):
#self._strainer.name = 'table'
element_name
=
self._strainer.name
tables
= doc.find_all(element_name, attrs=
attrs)
if
not
tables:
raise
ValueError(
'
No tables found
'
)
result
=
[]
unique_tables
=
set()
for
table
in
tables:
if
(table
not
in
unique_tables
and
table.find(text
=match)
is
not
None):
result.append(table)
unique_tables.add(table)
if
not
result:
raise
ValueError(
"
No tables found matching pattern %r
"
%
match.pattern)
return
result
def
_setup_build_doc(self):
raw_text
=
_read(self.io)
if
not
raw_text:
raise
ValueError(
'
No text parsed from document: %s
'
%
self.io)
return
raw_text
def
_build_doc(self):
from
bs4
import
BeautifulSoup
return
BeautifulSoup(self._setup_build_doc(), features=
'
html5lib
'
,
from_encoding
=
self.encoding)
def
_build_xpath_expr(attrs):
"""
Build an xpath expression to simulate bs4's ability to pass in kwargs to
search for attributes when using the lxml parser.
#将属性值转换为xpath表达式
Parameters
----------
attrs : dict
A dict of HTML attributes. These are NOT checked for validity.
Returns
-------
expr : unicode
An XPath expression that checks for the given HTML attributes.
#
give class attribute as class_ because class is a python keyword
if
'
class_
'
in
attrs:
attrs[
'
class
'
] = attrs.pop(
'
class_
'
)
s
= [u(
"
@%s=%r
"
) % (k, v)
for
k, v
in
iteritems(attrs)]
return
u(
'
[%s]
'
) %
'
and
'
.join(s)
_re_namespace
= {
'
re
'
:
'
http://exslt.org/regular-expressions
'
}
_valid_schemes
=
'
http
'
,
'
file
'
,
'
ftp
'
class
_LxmlFrameParser(_HtmlFrameParser):
"""
HTML to DataFrame parser that uses lxml under the hood.
#用lxml解析
Warning
-------
This parser can only handle HTTP, FTP, and FILE urls.
See Also
--------
_HtmlFrameParser
_BeautifulSoupLxmlFrameParser
Notes
-----
Documentation strings for this class are in the base class
:class:`_HtmlFrameParser`.
def
__init__
(self, *args, **
kwargs):
super(_LxmlFrameParser, self).
__init__
(*args, **
kwargs)
def
_text_getter(self, obj):
return
obj.text_content()
def
_parse_td(self, row):
return
row.xpath(
'
.//td|.//th
'
)
def
_parse_tr(self, table):
expr
=
'
.//tr[normalize-space()]
'
return
table.xpath(expr)
def
_parse_tables(self, doc, match, kwargs):
pattern
=
match.pattern
#
1. check all descendants for the given pattern and only search tables
#
2. go up the tree until we find a table
query =
'
//table//*[re:test(text(), %r)]/ancestor::table
'
xpath_expr
= u(query) %
pattern
#
if any table attributes were given build an xpath expression to
#
search for them
if
kwargs:
xpath_expr
+=
_build_xpath_expr(kwargs)
tables
= doc.xpath(xpath_expr, namespaces=
_re_namespace)
if
not
tables:
raise
ValueError(
"
No tables found matching regex %r
"
%
pattern)
return
tables
def
_build_doc(self):
Raises
------
ValueError
* If a URL that lxml cannot parse is passed.
Exception
* Any other ``Exception`` thrown. For example, trying to parse a
URL that is syntactically correct on a machine with no internet
connection will fail.
See Also
--------
pandas.io.html._HtmlFrameParser._build_doc
from
lxml.html
import
parse, fromstring, HTMLParser
from
lxml.etree
import
XMLSyntaxError
parser
= HTMLParser(recover=False, encoding=
self.encoding)
try
:
#
try to parse the input in the simplest way
r = parse(self.io, parser=
parser)
try
:
r
=
r.getroot()
except
AttributeError:
except
(UnicodeDecodeError, IOError):
#
if the input is a blob of html goop
if
not
_is_url(self.io):
r
= fromstring(self.io, parser=
parser)
try
:
r
=
r.getroot()
except
AttributeError:
else
:
#
not a url
scheme =
parse_url(self.io).scheme
if
scheme
not
in
_valid_schemes:
#
lxml can't parse it
msg = (
'
%r is not a valid url scheme, valid schemes are
'
'
%s
'
) %
(scheme, _valid_schemes)
raise
ValueError(msg)
else
:
#
something else happened: maybe a faulty connection
raise
else
:
if
not
hasattr(r,
'
text_content
'
):
raise
XMLSyntaxError(
"
no text parsed from document
"
, 0, 0, 0)
return
r
def
_parse_tbody(self, table):
return
table.xpath(
'
.//tbody
'
)
def
_parse_thead(self, table):
return
table.xpath(
'
.//thead
'
)
def
_parse_tfoot(self, table):
return
table.xpath(
'
.//tfoot
'
)
def
_parse_raw_thead(self, table):
expr
=
'
.//thead
'
thead
=
table.xpath(expr)
res
=
[]
if
thead:
trs
=
self._parse_tr(thead[0])
for
tr
in
trs:
cols
= [_remove_whitespace(x.text_content())
for
x
in
self._parse_td(tr)]
if
any([col !=
''
for
col
in
cols]):
res.append(cols)
return
res
def
_parse_raw_tfoot(self, table):
expr
=
'
.//tfoot//th|//tfoot//td
'
return
[_remove_whitespace(x.text_content())
for
x
in
table.xpath(expr)]
def
_expand_elements(body):
#k扩充元素 body = [['1','a','a','a'],['2','b'],['3','c','c']],
#扩充之后:body=[['1', 'a', 'a', 'a'], ['2', 'b', '', ''], ['3', 'c', 'c', '']]
#按照最大的length扩充其他行
lens
=
Series(lmap(len, body))
lens_max
=
lens.max()
not_max
= lens[lens !=
lens_max]
empty
= [
''
]
for
ind, length
in
iteritems(not_max):
body[ind]
+= empty * (lens_max -
length)
def
_data_to_frame(**
kwargs):
#将数据转换为DataFrame
head, body, foot
= kwargs.pop(
'
data
'
)
header
= kwargs.pop(
'
header
'
)
kwargs[
'
skiprows
'
] = _get_skiprows(kwargs[
'
skiprows
'
])
if
head:
rows
=
lrange(len(head))
body
= head +
body
if
header
is
None:
#
special case when a table has <th> elements
header = 0
if
rows == [0]
else
rows
if
foot:
body
+=
[foot]
#
fill out elements of body that are "ragged"
_expand_elements(body)
tp
= TextParser(body, header=header, **
kwargs)
df
=
tp.read()
return
df
_valid_parsers
= {
'
lxml
'
: _LxmlFrameParser, None: _LxmlFrameParser,
'
html5lib
'
: _BeautifulSoupHtml5LibFrameParser,
'
bs4
'
: _BeautifulSoupHtml5LibFrameParser}
def
_parser_dispatch(flavor):
"""
Choose the parser based on the input flavor.
#选择转换器
Parameters
----------
flavor : str
The type of parser to use. This must be a valid backend.
Returns
-------
cls : _HtmlFrameParser subclass
The parser class based on the requested input flavor.
Raises
------
ValueError
* If `flavor` is not a valid backend.
ImportError
* If you do not have the requested `flavor`
valid_parsers
=
list(_valid_parsers.keys())
if
flavor
not
in
valid_parsers:
raise
ValueError(
'
%r is not a valid flavor, valid flavors are %s
'
%
(flavor, valid_parsers))
if
flavor
in
(
'
bs4
'
,
'
html5lib
'
):
if
not
_HAS_HTML5LIB:
raise
ImportError(
"
html5lib not found, please install it
"
)
if
not
_HAS_BS4:
raise
ImportError(
"
BeautifulSoup4 (bs4) not found, please install it
"
)
import
bs4
if
bs4.
__version__
== LooseVersion(
'
4.2.0
'
):
raise
ValueError(
"
You're using a version
"
"
of BeautifulSoup4 (4.2.0) that has been
"
"
known to cause problems on certain
"
"
operating systems such as Debian.
"
"
Please install a version of
"
"
BeautifulSoup4 != 4.2.0, both earlier
"
"
and later releases will work.
"
)
else
:
if
not
_HAS_LXML:
raise
ImportError(
"
lxml not found, please install it
"
)
return
_valid_parsers[flavor]
def
_print_as_set(s):
return
'
{%s}
'
%
'
,
'
.join([pprint_thing(el)
for
el
in
s])
def
_validate_flavor(flavor):
if
flavor
is
None:
flavor
=
'
lxml
'
,
'
bs4
'
elif
isinstance(flavor, string_types):
flavor
=
flavor,
elif
isinstance(flavor, collections.Iterable):
if
not
all(isinstance(flav, string_types)
for
flav
in
flavor):
raise
TypeError(
'
Object of type %r is not an iterable of strings
'
%
type(flavor).
__name__
)
else
:
fmt
=
'
{0!r}
'
if
isinstance(flavor, string_types)
else
'
{0}
'
fmt
+=
'
is not a valid flavor
'
raise
ValueError(fmt.format(flavor))
flavor
=
tuple(flavor)
valid_flavors
=
set(_valid_parsers)
flavor_set
=
set(flavor)
if
not
flavor_set &
valid_flavors:
raise
ValueError(
'
%s is not a valid set of flavors, valid flavors are
'
'
%s
'
%
(_print_as_set(flavor_set),
_print_as_set(valid_flavors)))
return
flavor
def
_parse(flavor, io, match, attrs, encoding, **
kwargs):
flavor
=
_validate_flavor(flavor)
compiled_match
= re.compile(match)
#
you can pass a compiled regex here
#
hack around python 3 deleting the exception variable
retained =
None
for
flav
in
flavor:
parser
=
_parser_dispatch(flav)
p
=
parser(io, compiled_match, attrs, encoding)
try
:
tables
=
p.parse_tables()
except
Exception as caught:
retained
=
caught
else
:
break
else
:
raise_with_traceback(retained)
ret
=
[]
for
table
in
tables:
try
:
ret.append(_data_to_frame(data
=table, **
kwargs))
except
EmptyDataError:
#
empty table
continue
return
ret
def
read_html(io, match=
'
.+
'
, flavor=None, header=None, index_col=
None,
skiprows
=None, attrs=None, parse_dates=
False,
tupleize_cols
=False, thousands=
'
,
'
, encoding=
None,
decimal
=
'
.
'
, converters=None, na_values=
None,
keep_default_na
=
True):
r
"""
Read HTML tables into a ``list`` of ``DataFrame`` objects.
Parameters
----------
io : str or file-like
A URL, a file-like object, or a raw string containing HTML. Note that
lxml only accepts the http, ftp and file url protocols. If you have a
URL that starts with ``'https'`` you might try removing the ``'s'``.
match : str or compiled regular expression, optional
The set of tables containing text matching this regex or string will be
returned. Unless the HTML is extremely simple you will probably need to
pass a non-empty string here. Defaults to '.+' (match any non-empty
string). The default value will return all tables contained on a page.
This value is converted to a regular expression so that there is
consistent behavior between Beautiful Soup and lxml.
flavor : str or None, container of strings
The parsing engine to use. 'bs4' and 'html5lib' are synonymous with
each other, they are both there for backwards compatibility. The
default of ``None`` tries to use ``lxml`` to parse and if that fails it
falls back on ``bs4`` + ``html5lib``.
header : int or list-like or None, optional
The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to
make the columns headers.
index_col : int or list-like or None, optional
The column (or list of columns) to use to create the index.
skiprows : int or list-like or slice or None, optional
0-based. Number of rows to skip after parsing the column integer. If a
sequence of integers or a slice is given, will skip the rows indexed by
that sequence. Note that a single element sequence means 'skip the nth
row' whereas an integer means 'skip n rows'.
attrs : dict or None, optional
This is a dictionary of attributes that you can pass to use to identify
the table in the HTML. These are not checked for validity before being
passed to lxml or Beautiful Soup. However, these attributes must be
valid HTML table attributes to work correctly. For example, ::
attrs = {'id': 'table'}
is a valid attribute dictionary because the 'id' HTML tag attribute is
a valid HTML attribute for *any* HTML tag as per `this document
<http://www.w3.org/TR/html-markup/global-attributes.html>`__. ::
attrs = {'asdf': 'table'}
is *not* a valid attribute dictionary because 'asdf' is not a valid
HTML attribute even if it is a valid XML attribute. Valid HTML 4.01
table attributes can be found `here
<http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A
working draft of the HTML 5 spec can be found `here
<http://www.w3.org/TR/html-markup/table.html>`__. It contains the
latest information on table attributes for the modern web.
parse_dates : bool, optional
See :func:`~pandas.read_csv` for more details.
tupleize_cols : bool, optional
If ``False`` try to parse multiple header rows into a
:class:`~pandas.MultiIndex`, otherwise return raw tuples. Defaults to
``False``.
thousands : str, optional
Separator to use to parse thousands. Defaults to ``','``.
encoding : str or None, optional
The encoding used to decode the web page. Defaults to ``None``.``None``
preserves the previous encoding behavior, which depends on the
underlying parser library (e.g., the parser library will try to use
the encoding provided by the document).
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European
data).
.. versionadded:: 0.19.0
converters : dict, default None
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the cell (not column) content, and return the
transformed content.
.. versionadded:: 0.19.0
na_values : iterable, default None
Custom NA values
.. versionadded:: 0.19.0
keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN
values are overridden, otherwise they're appended to
.. versionadded:: 0.19.0
Returns
-------
dfs : list of DataFrames
Notes
-----
Before using this function you should read the :ref:`gotchas about the
HTML parsing libraries <io.html.gotchas>`.
Expect to do some cleanup after you call this function. For example, you
might need to manually assign column names if the column names are
converted to NaN when you pass the `header=0` argument. We try to assume as
little as possible about the structure of the table and push the
idiosyncrasies of the HTML contained in the table to the user.
This function searches for ``<table>`` elements and only for ``<tr>``
and ``<th>`` rows and ``<td>`` elements within each ``<tr>`` or ``<th>``
element in the table. ``<td>`` stands for "table data".
Similar to :func:`~pandas.read_csv` the `header` argument is applied
**after** `skiprows` is applied.
This function will *always* return a list of :class:`DataFrame` *or*
it will fail, e.g., it will *not* return an empty list.
Examples
--------
See the :ref:`read_html documentation in the IO section of the docs
<io.read_html>` for some examples of reading in HTML tables.
See Also
--------
pandas.read_csv
_importers()
#
Type check here. We don't want to parse only to fail because of an
#
invalid value of an integer skiprows.
if
isinstance(skiprows, numbers.Integral)
and
skiprows <
0:
raise
ValueError(
'
cannot skip rows starting from the end of the
'
'
data (you passed a negative value)
'
)
_validate_header_arg(header)
return
_parse(flavor=flavor, io=io, match=match, header=
header,
index_col
=index_col, skiprows=
skiprows,
parse_dates
=parse_dates, tupleize_cols=
tupleize_cols,
thousands
=thousands, attrs=attrs, encoding=
encoding,
decimal
=decimal, converters=converters, na_values=
na_values,
keep_default_na
=keep_default_na)