SCENIC/pySCENIC结果可视化 2022-11-08

适用背景

之前写了一篇文章介绍 四步完成单细胞数据调控网络流程分析 ,但生成的结果没有进行可视化,所以本篇文章将介绍可视化的内容。
本篇可视化主要分成三个部分:

  • 1、常规热图
  • 2、基于Seurat对象作图
  • 3、网络图
  • 4、plotRSS气泡图
  • SCENIC/pySCENIC结果具体展示什么呢?
    据我初步了解,主要展示regulons的活性值,所谓regulons其实应该就是TF,另外可以展示这些regulons调控的基因网络图。
    另外,SCENIC提供了一个plotRSS函数能根据RSS得分筛选细胞类型特异的regulons,而且可以对RSS得分进行可视化。注意RSS分值和活性值不能搞混,RSS分值衡量的是regulons对某种细胞类型的特异性。

    可视化举例

    做热图主要分为两种,一种是把细胞分组求regulons的活性平均值/中位数,另一种是展示所有细胞regulons的活性平均值。

    1、细胞分组求regulons的活性平均值/中位数

    这个数据集已做好降维聚类和注释,注释列为seurat_annotations:

    > head(sce)
                   orig.ident nCount_RNA nFeature_RNA seurat_annotations percent.mt
    AAACATACAACCAC     pbmc3k       2419          779       Memory CD4 T  3.0177759
    AAACATTGAGCTAC     pbmc3k       4903         1352                  B  3.7935958
    AAACATTGATCAGC     pbmc3k       3147         1129       Memory CD4 T  0.8897363
    AAACCGTGTATGCG     pbmc3k        980          521                 NK  1.2244898
    AAACGCACTGGTAC     pbmc3k       2163          781       Memory CD4 T  1.6643551
    AAACGCTGACCAGT     pbmc3k       2175          782              CD8 T  3.8160920
    AAACGCTGGTTCTT     pbmc3k       2260          790              CD8 T  3.0973451
    AAACGCTGTAGCCA     pbmc3k       1275          532        Naive CD4 T  1.1764706
    AAACGCTGTTTCTG     pbmc3k       1103          550       FCGR3A+ Mono  2.9011786
    AAACTTGAAAAACG     pbmc3k       3914         1112                  B  2.6315789
                   RNA_snn_res.0.5 seurat_clusters       group1 sub_celltype
    AAACATACAACCAC               1               1 Memory CD4 T Memory CD4 T
    AAACATTGAGCTAC               3               3            B            B
    AAACATTGATCAGC               1               1 Memory CD4 T Memory CD4 T
    AAACCGTGTATGCG               6               6           NK           NK
    AAACGCACTGGTAC               1               1 Memory CD4 T Memory CD4 T
    AAACGCTGACCAGT               4               4        CD8 T        CD8 T
    AAACGCTGGTTCTT               4               4        CD8 T        CD8 T
    AAACGCTGTAGCCA               0               0  Naive CD4 T  Naive CD4 T
    AAACGCTGTTTCTG               5               5 FCGR3A+ Mono FCGR3A+ Mono
    AAACTTGAAAAACG               3               3            B            B
    

    然后按照之前的文章跑一下流程:

    Rscript get_count_from_seurat.R -i pbmc3k.rds -d seurat_annotations -s 200 -l out
    python create_loom_file_from_scanpy.py -i out.csv
    sh pyscenic_from_loom.sh -i out.loom -n 10
    Rscript calcRSS_by_scenic.R -l aucell.loom -m metadata_subset.xls -c seurat_annotations
    

    生成文件有:

    aucell.loom
    ctx.csv
    grn.tsv
    metadata_subset.xls
    out.csv
    out.loom
    regulon_RSS.Rdata
    seurat_annotations_rss.rds
    subset.rds
    

    加载需要的包:

    library(Seurat)
    library(SCopeLoomR)
    library(AUCell)
    library(SCENIC)
    library(dplyr)
    library(KernSmooth)
    library(RColorBrewer)
    library(plotly)
    library(BiocParallel)
    library(pheatmap)
    library(cowplot)
    library(ggpubr)
    library(ggsci)
    library(ggplot2)
    library(tidygraph)
    library(ggraph)
    library(stringr)
    colpalettes<-unique(c(pal_npg("nrc")(10),pal_aaas("default")(10),pal_nejm("default")(8),pal_lancet("lanonc")(9),
                          pal_jama("default")(7),pal_jco("default")(10),pal_ucscgb("default")(26),pal_d3("category10")(10),
                          pal_locuszoom("default")(7),pal_igv("default")(51),
                          pal_uchicago("default")(9),pal_startrek("uniform")(7),
                          pal_tron("legacy")(7),pal_futurama("planetexpress")(12),pal_rickandmorty("schwifty")(12),
                          pal_simpsons("springfield")(16),pal_gsea("default")(12)))
    len <- 100
    incolor<-c(brewer.pal(8, "Dark2"),brewer.pal(12, "Paired"),brewer.pal(8, "Set2"),brewer.pal(9, "Set1"),colpalettes,rainbow(len))
    

    主函数plot_pyscenic

    plot_pyscenic函数参数介绍

  • inloom='aucell.loom',pyscenic得到的aucell.loom文件,可更改。
  • incolor=incolor,调色板,可自定义
  • inrss='seurat_annotations_rss.rds',计算细胞类型特异性regulons得到的_rss.rds后缀文件
  • inrds='subset.rds',用于分析pyscenic的rds,这里分组随机取了200个细胞
  • infun='median',展示的热图用中位数还是平均值,默认用中位数,平均值改成mean。
  • ct.col='seurat_annotations',分组的列,这里用seurat_annotations
  • inregulons=NULL,可以指定感兴趣的regulons,如果没有指定,默认使用前5的
  • ingrn='grn.tsv'
  • ntop1=5,热图展示的活性值top regulon,默认为前5.
  • ntop2=50,网络图展示regulons调控的权重top基因,默认为前50。
  • plot_pyscenic <- function(inloom='aucell.loom',incolor=incolor,inrss='seurat_annotations_rss.rds',inrds='subset.rds',infun='median', ct.col='seurat_annotations',inregulons=NULL,ingrn='grn.tsv',ntop1=5,ntop2=50){
    ###load data
    loom <- open_loom(inloom)
    regulons_incidMat <- get_regulons(loom, column.attr.name="Regulons")
    regulons <- regulonsToGeneLists(regulons_incidMat)
    regulonAUC <- get_regulons_AUC(loom,column.attr.name='RegulonsAUC')
    regulonAucThresholds <- get_regulon_thresholds(loom)
    embeddings <- get_embeddings(loom)
    close_loom(loom)
    rss <- readRDS(inrss)
    sce <- readRDS(inrds)
    ##calculate  RSS fc
    df = do.call(rbind,
                 lapply(1:ncol(rss), function(i){
                    dat= data.frame(
                    regulon  = rownames(rss),
                    cluster =  colnames(rss)[i],
                    sd.1 = rss[,i],
                    sd.2 = apply(rss[,-i], 1, get(infun))
    df$fc = df$sd.1 - df$sd.2
    #select top regulon
    ntopg <- df %>% group_by(cluster) %>% top_n(ntop1, fc)
    ntopgene <- unique(ntopg$regulon)
    write.table(ntopgene,'sd_regulon_RSS.list',sep='\t',quote=F,row.names=F,col.names=F)
    #plot rss by cluster
    #using plotRSS
    rssPlot <- plotRSS(rss)
    regulonsToPlot <- rssPlot$rowOrder
    rp_df <- rssPlot$df
    write.table(regulonsToPlot,'rss_regulon.list',sep='\t',quote=F,row.names=F,col.names=F)
    write.table(rp_df,'rssPlot_data.xls',sep='\t',quote=F)
    nlen <- length(regulonsToPlot)
    hei <- ceiling(nlen)*0.4
    blu<-colorRampPalette(brewer.pal(9,"Blues"))(100)
    lgroup <- levels(rssPlot$df$cellType)
    nlen2 <- length(lgroup)
    wei <- nlen2*2
    pdf(paste0('regulons_RSS_',ct.col,'_in_dotplot.pdf'),wei,hei)
    print(rssPlot$plot)
    dev.off()
    # sd top gene
    anrow = data.frame( group = ntopg$cluster)
    lcolor <- incolor[1:length(unique(ntopg$cluster))]
    names(lcolor) <- unique(anrow$group)
    annotation_colors <- list(group=lcolor)
    pn1 = rss[ntopg$regulon,]
    pn2 = rss[unique(ntopg$regulon),]
    rownames(pn1) <-  make.unique(rownames(pn1))
    rownames(anrow) <- rownames(pn1)
    scale='row'
    hei <- ceiling(length(ntopg$regulon)*0.4)
    pdf(paste0('regulon_RSS_in_sd_topgene_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(pn1,annotation_row = anrow,scale=scale,annotation_colors=annotation_colors,show_rownames = T,main='sd top regulons')
    print(
    pheatmap(pn2,scale=scale,show_rownames = T, main='sd top unique regulons')
    dev.off()
    #plotRSS gene
    pn2 = rss[unique(rp_df$Topic),]
    scale='row'
    hei <- ceiling(length(unique(rp_df$Topic))*0.4)
    pdf(paste0('regulon_RSS_in_plotRSS_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(pn2,scale=scale,show_rownames = T, main='plotRSS unique regulons')
    dev.off()
    #all regulons
    hei <- ceiling(length(rownames(rss))*0.2)
    pdf(paste0('all_regulons_RSS_in_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(rss,scale=scale,show_rownames = T,main='all regulons RSS')
    dev.off()
    #plot rss by all cells
    if (is.null(inregulons)){
    inregulons <- regulonsToPlot
    }else{
    inregulons <- intersect(inregulons,rownames(rss))
    regulonsToPlot <- inregulons
    pn3=as.matrix(regulonAUC@assays@data$AUC)
    regulon <- rownames(pn3)
    #regulon <- inregulons
    pn3 <- pn3[regulon,]
    #pn3 <- pn3[,sample(1:dim(pn3)[2],500)]
    sce$group1=sce@meta.data[,ct.col]
    meta <- sce@meta.data
    meta <- meta[order(meta$group1),]
    #meta <- meta[colnames(pn3),]
    ancol = data.frame(meta[,c('group1')])
    colnames(ancol) <- c('group1')
    rownames(ancol) <- rownames(meta)
    lcolor <- incolor[1:length(unique(ntopg$cluster))]
    names(lcolor) <- unique(ntopg$cluster)
    annotation_colors <- list(group1 =lcolor)
    df1 <- ancol
    df1$cell <- rownames(df1)
    df1 <- df1[order(df1$group1),]
    pn3 <- pn3[,rownames(df1)]
    torange=c(-2,2)
    pn3 <- scales::rescale(pn3,to=torange)
    pn3 <- pn3[,rownames(ancol)]
    scale='none'
    hei <- ceiling(length(unique(regulon))*0.2)
    pdf(paste0('all_regulon_activity_in_allcells.pdf'),10,hei)
    print(
    pheatmap(pn3,annotation_col = ancol,scale=scale,annotation_colors=annotation_colors,show_rownames = T,show_colnames = F,cluster_cols=F)
    #pheatmap(pn3,scale=scale,show_rownames = T, show_colnames = F,cluster_cols=F)
    dev.off()
    #plot in seurat
    regulonsToPlot = inregulons
    sce$sub_celltype <- sce@meta.data[,ct.col]
    sub_regulonAUC <- regulonAUC[,match(colnames(sce),colnames(regulonAUC))]
    cellClusters <- data.frame(row.names = colnames(sce),
                               seurat_clusters = as.character(sce$seurat_clusters))
    cellTypes <- data.frame(row.names = colnames(sce),
                            celltype = sce$sub_celltype)
    sce@meta.data = cbind(sce@meta.data ,t(sub_regulonAUC@assays@data@listData$AUC[regulonsToPlot,]))
    Idents(sce) <- sce$sub_celltype
    nlen <- length(regulonsToPlot)
    hei <- ceiling(nlen)*0.4
    blu<-colorRampPalette(brewer.pal(9,"Blues"))(100)
    nlen2 <- length(unique(sce$sub_celltype))
    wei <- nlen2*2
    pdf('regulons_activity_in_dotplot.pdf',wei,hei)
    print(DotPlot(sce, features = unique(regulonsToPlot)) + coord_flip()+
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5))+
          scale_color_gradientn(colours = blu)
    dev.off()
    hei=ceiling(nlen/4)*4
    pdf('regulons_activity_in_umap.pdf',16,hei)
    print(RidgePlot(sce, features = regulonsToPlot , ncol = 4))
    print(VlnPlot(sce, features = regulonsToPlot,pt.size = 0 ))
    print(FeaturePlot(sce, features = regulonsToPlot))
    dev.off()
    grn <- read.table(ingrn,sep='\t',header=T,stringsAsFactors=F)
    inregulons1=gsub('[(+)]','',inregulons)
    c1 <- which(grn$TF %in% inregulons1)
    grn <- grn[c1,]
    #edge1 <- data.frame()
    #node1 <- data.frame()
    pdf(paste0(ntop2,'_regulon_netplot.pdf'),10,10)
    for (tf in unique(grn$TF)) {
    tmp <- subset(grn,TF==tf)
    if (dim(tmp)[1] > ntop2) {
    tmp <- tmp[order(tmp$importance,decreasing=T),]
    tmp <- tmp[1:ntop2,]
    node2 <- data.frame(tmp$target)
    node2$node.size=1.5
    node2$node.colour <- 'black'
    colnames(node2) <- c('node','node.size','node.colour')
    df1 <- data.frame(node=tf,node.size=2,node.colour='#FFDA00')
    node2 <- rbind(df1,node2)
    edge2 <- tmp
    colnames(edge2) <- c('from','to','edge.width')
    edge2$edge.colour <- "#1B9E77"
    torange=c(0.1,1)
    edge2$edge.width <- scales::rescale(edge2$edge.width,to=torange)
    graph_data <- tidygraph::tbl_graph(nodes = node2, edges = edge2, directed = T)
    p1 <- ggraph(graph = graph_data, layout = "stress", circular = TRUE) + geom_edge_arc(aes(edge_colour = edge.colour, edge_width = edge.width)) +
      scale_edge_width_continuous(range = c(1,0.2)) +geom_node_point(aes(colour = node.colour, size = node.size))+ theme_void() +
          geom_node_label(aes(label = node,colour = node.colour),size = 3.5, repel = TRUE)
    p1 <- p1 + scale_color_manual(values=c('#FFDA00','black'))+scale_edge_color_manual(values=c("#1B9E77"))
    print(p1)
    dev.off()
    #plot activity heatmap
    meta <- sce@meta.data
    celltype <- ct.col
    cellsPerGroup <- split(rownames(meta),meta[,celltype])
    sub_regulonAUC <- regulonAUC[onlyNonDuplicatedExtended(rownames(regulonAUC)),]
    # Calculate average expression:
    regulonActivity_byGroup <- sapply(cellsPerGroup,
                                      function(cells)
                                        rowMeans(getAUC(sub_regulonAUC)[,cells]))
    scale='row'
    rss <- regulonActivity_byGroup
    hei <- ceiling(length(regulonsToPlot)*0.4)
    pn1 <- rss[regulonsToPlot,]
    pdf(paste0('regulon_activity_in_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(pn1,scale=scale,show_rownames = T, main='regulons activity')
    dev.off()
    hei <- ceiling(length(rownames(rss))*0.2)
    pdf(paste0('all_regulons_activity_in_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(rss,scale=scale,show_rownames = T,main='all regulons activity')
    dev.off()
    ##calculate fc
    df = do.call(rbind,
                 lapply(1:ncol(rss), function(i){
                    dat= data.frame(
                    regulon  = rownames(rss),
                    cluster =  colnames(rss)[i],
                    sd.1 = rss[,i],
                    sd.2 = apply(rss[,-i], 1, get(infun))
    df$fc = df$sd.1 - df$sd.2
    #select top regulon
    ntopg <- df %>% group_by(cluster) %>% top_n(ntop1, fc)
    ntopgene <- unique(ntopg$regulon)
    write.table(ntopgene,'sd_regulon_activity.list',sep='\t',quote=F,row.names=F,col.names=F)
    anrow = data.frame( group = ntopg$cluster)
    lcolor <- incolor[1:length(unique(ntopg$cluster))]
    names(lcolor) <- unique(anrow$group)
    annotation_colors <- list(group=lcolor)
    pn1 = rss[ntopg$regulon,]
    pn2 = rss[unique(ntopg$regulon),]
    rownames(pn1) <-  make.unique(rownames(pn1))
    rownames(anrow) <- rownames(pn1)
    scale='row'
    hei <- ceiling(length(ntopg$regulon)*0.4)
    pdf(paste0('regulon_activity_in_sd_topgene_',ct.col,'.pdf'),wei,hei)
    print(
    pheatmap(pn1,annotation_row = anrow,scale=scale,annotation_colors=annotation_colors,show_rownames = T,main='sd top regulons')
    print(
    pheatmap(pn2,scale=scale,show_rownames = T, main='sd top unique regulons ')
    dev.off()
    

    使用方法及结果

    使用示例:

    plot_pyscenic(inloom='aucell.loom',incolor=incolor,inrss='seurat_annotations_rss.rds',inrds='subset.rds',infun='median', ct.col='seurat_annotations',inregulons=NULL,ingrn='grn.tsv',ntop1=5,ntop2=50)
    

    生成文件如下:

    所有细胞中找到的所有regulons的活性热图文件all_regulon_activity_in_allcells.pdf