Abstract:

Based on the panel data of coal consumption, urbanization, advanced industrial structure and rationalization of industrial structure in 17 provinces in the central and western regions in China from 2000 to 2019, this paper constructs a PVAR model to analyze the interactive influence relationship among the four. The results show that urbanization is the Granger cause of coal consumption, and coal consumption firstly has a positive effect on urbanization and then has a negative effect on it in the short term; coal consumption is the Granger cause of advancement of industrial structure. And the coal consumption has more lastingly negative effect on the advancement of industrial structure. The advancement of industrial structure is the Granger cause of urbanization and the rationalization of the industrial structure. It has a long-term negative effect on urbanization and negative effect on rationalization of the industrial structure. Therefore, China should promote the development of high-quality urbanization, adjust the industrial structure and form a virtuous circle to control coal consumption.

Key words: central and western regions in China, energy consumption structure, coal consumption, urbanization, industrial structure, carbon peak, carbon neutralization

数据平稳性检验结果"

变量 LLC Breitung PP-Fisher
t P t P chi-square P
lnmt 1.292 0.901 4.046 1.000 9.500 1.000
dlnmt -10.010 0.000 *** -4.225 0.000 *** 156.518 0.000 ***
lnur -2.466 0.006 *** 1.630 0.948 85.286 0.000 ***
dlnur -10.279 0.000 *** -6.439 0.000 *** 146.200 0.000 ***
lnts 1.821 0.965 4.443 1.000 5.821 1.000
dlnts -10.428 0.000 *** -30.674 0.001 *** 135.615 0.000 ***
lntl -2.423 0.007 *** -1.102 0.135 33.485 0.492
dlntl -13.238 0.000 *** -8.285 0.000 *** 160.978 0.000 ***

PVAR格兰杰因果检验结果"

因变量 自变量 χ 2 统计量 自由度 P
h_dlnmt h_dlnur 64.895 5 0.000 ***
h_dlnts 9.003 5 0.109
h_dlntl 6.640 5 0.249
h_dlnur h_dlnmt 7.442 5 0.190
h_dlnts 12.527 5 0.028 **
h_dlntl 2.737 5 0.741
h_dlnts h_dlnmt 13.317 5 0.021 **
h_dlnur 10.632 5 0.059 *
h_dlntl 0.948 5 0.967
h_dlntl h_dlnmt 7.834 5 0.166
h_dlnur 5.510 5 0.357
h_dlnts 11.695 5 0.039 **

dlnmt和dlnur的方差分解结果"

滞后阶数 dlnmt dlnur
dlnmt dlnur dlnts dlntl dlnmt dlnur dlnts dlntl
1 1 0 0 0 0.018 0.982 0 0
2 0.961 0.004 0.034 0.002 0.030 0.963 0.001 0.006
3 0.906 0.007 0.035 0.052 0.036 0.918 0.038 0.008
4 0.881 0.007 0.049 0.063 0.035 0.898 0.056 0.011
5 0.867 0.007 0.053 0.073 0.034 0.859 0.094 0.013
6 0.867 0.007 0.052 0.074 0.038 0.821 0.129 0.012
7 0.866 0.007 0.054 0.073 0.047 0.810 0.131 0.012
8 0.865 0.007 0.054 0.074 0.050 0.800 0.138 0.012
9 0.865 0.007 0.054 0.074 0.053 0.794 0.141 0.013
10 0.863 0.007 0.055 0.076 0.055 0.789 0.143 0.013

dlnts和dlntl的方差分解结果"

滞后阶数 dlnts dlntl
dlnmt dlnur dlnts dlntl dlnmt dlnur dlnts dlntl
1 0.071 0.041 0.889 0 0.005 0.014 0.050 0.931
2 0.141 0.035 0.823 0.002 0.012 0.014 0.081 0.893
3 0.158 0.032 0.808 0.002 0.013 0.014 0.082 0.891
4 0.159 0.03 0.805 0.005 0.021 0.014 0.094 0.872
5 0.166 0.031 0.797 0.006 0.023 0.014 0.096 0.867
6 0.177 0.029 0.788 0.006 0.022 0.013 0.098 0.866
7 0.189 0.028 0.775 0.008 0.027 0.013 0.101 0.859
8 0.196 0.028 0.768 0.009 0.029 0.013 0.101 0.857
9 0.200 0.027 0.763 0.010 0.029 0.013 0.102 0.856
10 0.203 0.027 0.759 0.011 0.030 0.013 0.103 0.855