数据的筛选、重组、结构化、预处理等都属于探索性数据分析的范畴,探索性数据分析是帮助数据分析师掌握数据结构的重要工具,也是奠定后续工作的成功基石。
在数据的分析项目中,数据的收集和预处理往往占据整个项目工作量的十之八九,正式这些简单的工作决定了整个项目的成败。
Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great but a little basic for serious exploratory data analysis. pandas_profiling extends the pandas DataFrame with df.profile_report() for quick data analysis.
For each column the following statistics - if relevant for the column type - are presented in an interactive HTML report:
Essentials: type, unique values, missing values
Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
Most frequent values
Histogram
Correlations highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
Missing values matrix, count, heatmap and dendrogram of missing values