相关文章推荐
伤情的遥控器  ·  ServiceDescription 和 ...·  1 年前    · 
近视的茶壶  ·  点云 - 知乎·  1 年前    · 
英姿勃勃的香槟  ·  Android Recycleview ...·  1 年前    · 
  • Department of Applied Physics, Stanford University, Stanford, California 94305, United States.
  • Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.
  • Aionics, Inc., Evanston, Wyoming 82930, United States.
  • Department of Chemistry, Stanford University, Stanford, California 94305, United States.
  • Google Brain, Mountain View, California 94043, United States.
  • Solid Power, Inc., Louisville, Colorado 80027, United States.
  • 我们报告了一种固态锂离子电解质,该电解质有望同时展现出快速的离子电导率,宽的电化学稳定性,低成本和低质量密度。我们报告了基于出色的密度泛函理论(DFT)的室温单晶锂-硼-硫(Li-BS)体系中两相的室温离子电导率值:62(+9,-2)mS cm -1 在李 5 7 小号 13 和80(-56,-41)。MS厘米 -1 的Li 9 19 š 33 。我们报告了两个附加相的重要离子电导率值:在Li 2 B 2 S中为0.0056至0.16 mS / cm –1 之间 Li 3 BS 3中为 5 和0.0031至9.7 mS cm –1之间 ,具体取决于所使用的室温外推方案。据我们所知,我们的预测使Li 9 B 19 S 33 和Li 5 B 7 S 13 成为任何晶体材料的DFT计算的单晶离子电导率的第二和第三高。我们计算出这些材料的热力学电化学稳定性窗口宽度对于Li 5 B 7 S 13 为0.50 V,对于Li 2 B 2 S 5 为0.16 V,对于Li为0.45 V 3 BS 3 和0.60 V的Li 9 B 19 S 33 。与包括Li 10 GeP 2 S 12 (LGPS)在内的最著名的基于硫化物的固态锂离子电解质材料相比,这些材料分别具有相似或更好的离子电导率和电化学稳定性。但是,我们预测,由Li–B–S系统中的各种成分合成的电解质材料可能会显示出更宽的0.63 V的热力学电化学稳定性窗口,并可能高达3 V或更高。Li–B–S系统的基本成本也很低,约为0.05 USD / m 2 每10μm厚度,明显低于含锗LGPS的厚度,并且质量密度低于2 g / cm 3 。这些快速传导阶段最初是通过基于机器学习的方法来筛选12,000多种固体电解质候选物而引起我们注意的,此处提供的证据表明该模型取得了令人鼓舞的成功。 We report a solid-state Li-ion electrolyte predicted to exhibit simultaneously fast ionic conductivity, wide electrochemical stability, low cost, and low mass density. We report exceptional density functional theory (DFT)-based room-temperature single-crystal ionic conductivity values for two phases within the crystalline lithium–boron–sulfur (Li–B–S) system: 62 (+9, −2) mS cm –1 in Li 5 B 7 S 13 and 80 (−56, −41) mS cm –1 in Li 9 B 19 S 33 . We report significant ionic conductivity values for two additional phases: between 0.0056 and 0.16 mS/cm –1 in Li 2 B 2 S 5 and between 0.0031 and 9.7 mS cm –1 in Li 3 BS 3 depending on the room-temperature extrapolation scheme used. To our knowledge, our prediction gives Li 9 B 19 S 33 and Li 5 B 7 S 13 the second and third highest reported DFT-computed single-crystal ionic conductivities of any crystalline material. We compute the thermodynamic electrochemical stability window widths of these materials to be 0.50 V for Li 5 B 7 S 13 , 0.16 V for Li 2 B 2 S 5 , 0.45 V for Li 3 BS 3 , and 0.60 V for Li 9 B 19 S 33 . Individually, these materials exhibit similar or better ionic conductivity and electrochemical stability than the best-known sulfide-based solid-state Li-ion electrolyte materials, including Li 10 GeP 2 S 12 (LGPS). However, we predict that electrolyte materials synthesized from a range of compositions in the Li–B–S system may exhibit even wider thermodynamic electrochemical stability windows of 0.63 V and possibly as high as 3 V or greater. The Li–B–S system also has a low elemental cost of approximately 0.05 USD/m 2 per 10 μm thickness, which is significantly lower than that of germanium-containing LGPS, and a comparable mass density below 2 g/cm 3 . These fast-conducting phases were initially brought to our attention by a machine learning-based approach to screen over 12,000 solid electrolyte candidates, and the evidence provided here represents an inspiring success for this model.