res0: String = 2.2 . 0 .cloudera1 scala > val df = spark.createDataset(Seq(( " key1 " , 23 , 1.0 ), ( " key1 " , 10 , 2.0 ))).toDF( " id " , " rsrp " , " rsrq " ) df : org.apache.spark.sql.DataFrame = [ id : string , rsrp: int ... 1 more field] scala > df .show +----+----+----+ | id |rsrp|rsrq| +----+----+----+ |key1| 23 | 1.0 | |key1| 10 | 2.0 | +----+----+----+ scala > df .printSchema |-- id : string (nullable = true ) |-- rsrp: integer (nullable = false ) |-- rsrq: double (nullable = false )

第一种方式:使用lit()增加常量(固定值)

可以是字符串类型,整型

scala> df.withColumn("sinurl", lit(12)).show 
+----+----+----+------+
|  id|rsrp|rsrq|sinurl|
+----+----+----+------+
|key1|  23| 1.0|    12|
|key1|  10| 2.0|    12|
+----+----+----+------+
scala> df.withColumn("type", lit("mr")).show 
+----+----+----+----+
|  id|rsrp|rsrq|type|
+----+----+----+----+
|key1|  23| 1.0|  mr|
|key1|  10| 2.0|  mr|
+----+----+----+----+

lit() 是spark自带的函数,需要 import org.apache.spark.sql.functions

Since 1.3.0
def lit(literal: Any): Column Creates a Column of literal value. The passed in object is returned directly if it is already a Column. If the object is a Scala Symbol, it is converted into a Column also. Otherwise, a new Column is created to represent the literal value.

第二种方式:使用当前已有的某列的变换新增

scala> df.withColumn("rsrp2", $"rsrp"*2).show 
+----+----+----+-----+
|  id|rsrp|rsrq|rsrp2|
+----+----+----+-----+
|key1|  23| 1.0|   46|
|key1|  10| 2.0|   20|
+----+----+----+-----+

第三种方式:使用select函数增加列

java方式:

import static org.apache.spark.sql.functions.col;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.functions;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;
    private final SimpleDateFormat srcSdf = new SimpleDateFormat("yyyy-MM-dd HH:00:00");
    private final SimpleDateFormat destSdf = new SimpleDateFormat("yyyy-MM-dd 00:00:00");
    public Dataset<Row> handler(Dataset<Row> esDataset){
        UDF1 date_fomat = new UDF1<String, String>() {
            private static final long serialVersionUID = 1L;
            public String call(final String value) throws Exception {
                Date date = srcSdf.parse(value);
                return destSdf.format(date);
        sparkSession.udf().register("date_fomat_func", date_fomat, DataTypes.StringType);
        UDF1 to_long = new UDF1<Long, Long>() {
            private static final long serialVersionUID = 1L;
            public Long call(final Long value) throws Exception {
                Date date = srcSdf.parse(String.valueOf(value));
                return destSdf.parse(destSdf.format(date)).getTime();
        sparkSession.udf().register("to_long_func", to_long, DataTypes.LongType);
        esDataset=esDataset.withColumn("scan_start_time", functions.callUDF("date_fomat_func", col("scan_start_time")));
        esDataset=esDataset.withColumn("scan_stop_time", functions.callUDF("date_fomat_func", col("scan_stop_time")));
        esDataset=esDataset.withColumn("timestamp", functions.callUDF("to_long_func", col("timestamp")));
        return esDataset;

scala

scala> import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.DataTypes
scala> df.select(col("*"), 
     |     udf{
     |         (e:Int) =>
     |             if(e == "23") {
     |             } else {
     |     }.apply(df("rsrp")).cast(DataTypes.DoubleType).as("rsrp_udf")
     | ).show
+----+----+----+--------+
|  id|rsrp|rsrq|rsrp_udf|
+----+----+----+--------+
|key1|  23| 1.0|     2.0|
|key1|  10| 2.0|     2.0|
+----+----+----+--------+
scala> df.select(col("*"),
     |     when(df("rsrp") > 10, lit(">10")).when(df("rsrp") === 10, "=10").otherwise("<10").as("rsrp_compare10")
     | ).show
+----+----+----+--------------+
|  id|rsrp|rsrq|rsrp_compare10|
+----+----+----+--------------+
|key1|  23| 1.0|           >10|
|key1|  10| 2.0|           =10|
+----+----+----+--------------+

第四种方式:case when当参数嵌套udf

df.withColumn("r",
   when($"rsrp".isNull, lit(null))
       .otherwise(udf1($"rsrp"))
       .cast(DataTypes.IntegerType)

第五种方式:使用expr()函数

scala> df.withColumn("rsrp4", expr("rsrp * 4")).show
+----+----+----+-----+
|  id|rsrp|rsrq|rsrp4|
+----+----+----+-----+
|key1|  23| 1.0|   92|
|key1|  10| 2.0|   40|
+----+----+----+-----+

Dataset删除列

scala> df.drop("rsrp").show
+----+----+
|  id|rsrq|
+----+----+
|key1| 1.0|
|key1| 2.0|
+----+----+
scala> df.drop("rsrp","rsrq").show
+----+
|  id|
+----+
|key1|
|key1|
+----+

Dataset替换null列

首先,在hadoop目录/user/spark/test.csv

[spark@master ~]$ hadoop fs -text /user/spark/test.csv
key1,key2,key3,key4,key5
aaa,1,2,t1,4
bbb,5,3,t2,8
ccc,2,2,,7
,7,3,t1,
bbb,1,5,t3,0
,4,,t1,8 

备注:如果想在根目录下执行spark-shell.需要在/etc/profile中追加spark的安装目录:

export SPARK_HOME=/opt/spark-2.2.1-bin-hadoop2.7
export PATH=$PATH:$SPARK_HOME/bin

使用spark加载.user/spark/test.csv文件

[spark@master ~]$ spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
18/10/29 21:50:32 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://192.168.0.120:4040
Spark context available as 'sc' (master = local[*], app id = local-1540821032565).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.1
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_171)
Type in expressions to have them evaluated.
Type :help for more information.
scala> val df = spark.read.option("header","true").csv("/user/spark/test.csv")
18/10/29 21:51:16 WARN metastore.ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
18/10/29 21:51:16 WARN metastore.ObjectStore: Failed to get database default, returning NoSuchObjectException
18/10/29 21:51:37 WARN metastore.ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
df: org.apache.spark.sql.DataFrame = [key1: string, key2: string ... 3 more fields]
scala> df.show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2|null|   7|
|null|   7|   3|  t1|null|
| bbb|   1|   5|  t3|   0|
|null|   4|null|  t1|  8 |
+----+----+----+----+----+
scala> df.schema
res3: org.apache.spark.sql.types.StructType = StructType(StructField(key1,StringType,true), StructField(key2,StringType,true), 
StructField(key3,StringType,true), StructField(key4,StringType,true), StructField(key5,StringType,true)) scala> df.printSchema |-- key1: string (nullable = true) |-- key2: string (nullable = true) |-- key3: string (nullable = true) |-- key4: string (nullable = true) |-- key5: string (nullable = true)

一次修改相同类型的多个列的示例。 这里是把key3,key5列中所有的null值替换成1024。 csv导入时默认是string,如果是整型,写法是一样的,有各个类型的重载。

scala>  df.na.fill("1024",Seq("key3","key5")).show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2|null|   7|
|null|   7|   3|  t1|1024|
| bbb|   1|   5|  t3|   0|
|null|   4|1024|  t1|  8 |
+----+----+----+----+----+

一次修改不同类型的多个列的示例。 csv导入时默认是string,如果是整型,写法是一样的,有各个类型的重载。

scala> df.na.fill(Map(("key1"->"yyy"),("key3","1024"),("key4","t88"),("key5","4096"))).show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2| t88|   7|
| yyy|   7|   3|  t1|4096|
| bbb|   1|   5|  t3|   0|
| yyy|   4|1024|  t1|  8 |
+----+----+----+----+----+

不修改,只是过滤掉含有null值的行。 这里是过滤掉key3,key5列中含有null的行

scala>  df.na.drop(Seq("key3","key5")).show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2|null|   7|
| bbb|   1|   5|  t3|   0|
+----+----+----+----+----+

过滤掉指定的若干列中,有效值少于n列的行 这里是过滤掉key1,key2,key3这3列中有效值小于2列的行。最后一行中,这3列有2列都是null,所以被过滤掉了。

scala> df.na.drop(2,Seq("key1","key2","key3")).show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2|null|   7|
|null|   7|   3|  t1|null|
| bbb|   1|   5|  t3|   0|
+----+----+----+----+----+

同上,如果不指定列名列表,则默认列名列表就是所有列

scala> df.na.drop(4).show
+----+----+----+----+----+
|key1|key2|key3|key4|key5|
+----+----+----+----+----+
| aaa|   1|   2|  t1|   4|
| bbb|   5|   3|  t2|   8|
| ccc|   2|   2|null|   7|
| bbb|   1|   5|  t3|   0|
+----+----+----+----+----+

https://blog.csdn.net/coding_hello/article/details/75211995

https://blog.csdn.net/xuejianbest/article/details/81666065

基础才是编程人员应该深入研究的问题,比如:
1)List/Set/Map内部组成原理|区别
2)mysql索引存储结构&如何调优/b-tree特点、计算复杂度及影响复杂度的因素。。。
3)JVM运行组成与原理及调优
4)Java类加载器运行原理
5)Java中GC过程原理|使用的回收算法原理
6)Redis中hash一致性实现及与hash其他区别
7)Java多线程、线程池开发、管理Lock与Synchroined区别
8)Spring IOC/AOP 原理;加载过程的。。。
+加关注】。