The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex . J. Neurosci. 12315–12320 (2009). [ PMC free article ] [ PubMed ] [ Google Scholar ]
2. Padoa-Schioppa C., Assad J. A., Neurons in the orbitofrontal cortex encode economic value . Nature 441 , 223–226 (2006). [ PMC free article ] [ PubMed ] [ Google Scholar ]
3. Hare T. A., Camerer C. F., Rangel A., Self-control in decision-making involves modulation of the vmPFC valuation system . Science 324 , 646–648 (2009). [ PubMed ] [ Google Scholar ]
4. Levy D. J., Glimcher P. W., Comparing apples and oranges: Using reward-specific and reward-general subjective value representation in the brain . J. Neurosci. 14693–14707 (2011). [ PMC free article ] [ PubMed ] [ Google Scholar ]
5. Rangel A., Consciousness meets neuroeconomics: What is the value of stimulus awareness in decision making? Neuron 525–527 (2008). [ PubMed ] [ Google Scholar ]
6. Plassmann H., O’Doherty J., Rangel A., Orbitofrontal cortex encodes willingness to pay in everyday economic transactions . J. Neurosci. 9984–9988 (2007). [ PMC free article ] [ PubMed ] [ Google Scholar ]
7. Tom S. M., Fox C. R., Trepel C., Poldrack R. A., The neural basis of loss aversion under in decision-making under risk . Science 315 , 515–518 (2007). [ PubMed ] [ Google Scholar ]
8. Botvinick M., An J., Goal-directed decision making in prefrontal cortex: A computational framework . Adv. Neural Inf. Process. Syst. 169–176 (2009). [ PMC free article ] [ PubMed ] [ Google Scholar ]
9. Folke T., Jacobsen C., Fleming S. M., De Martino B., Explicit representation of confidence informs future value-based decisions . Nat. Hum. Behav. 0002 (2017). [ Google Scholar ]
10. Lebreton M., Abitbol R., Daunizeau J., Pessiglione M., Automatic integration of confidence in the brain valuation signal . Nat. Neurosci. 1159–1167 (2015). [ PubMed ] [ Google Scholar ]
11. Tremblay L., Schultz W., Relative reward preference in primate orbitofrontal cortex . Nature 398 , 704–708 (1999). [ PubMed ] [ Google Scholar ]
12. Abitbol R., Lebreton M., Hollard G., Richmond B. J., Bouret S., Pessiglione M., Neural mechanisms underlying contextual dependency of subjective values: Converging evidence from monkeys and humans . J. Neurosci. 2308–2320 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
13. Rudorf S., Hare T. A., Interactions between dorsolateral and ventromedial prefrontal cortex underlie context-dependent stimulus valuation in goal-directed choice . J. Neurosci. 15988–15996 (2014). [ PMC free article ] [ PubMed ] [ Google Scholar ]
14. Soltani A., De Martino B., Camerer C., A range-normalization model of context-dependent choice: A new model and evidence . PLOS Comput. Biol. e1002607 (2012). [ PMC free article ] [ PubMed ] [ Google Scholar ]
15. Lopez-Persem A., Domenech P., Pessiglione M., How prior preferences determine decision-making frames and biases in the human brain . eLife 5 , (2016). [ PMC free article ] [ PubMed ] [ Google Scholar ]
16. Palminteri S., Khamassi M., Joffily M., Coricelli G., Contextual modulation of value signals in reward and punishment learning . Nat. Commun. 8096 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
17. Balleine B. W., Dickinson A., Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates . Neuropharmacology 407–419 (1998). [ PubMed ] [ Google Scholar ]
18. Bouret S., Richmond B. J., Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys . J. Neurosci. 8591–8601 (2010). [ PMC free article ] [ PubMed ] [ Google Scholar ]
19. Young C. B., Nusslock R., Positive mood enhances reward-related neural activity . Soc. Cogn. Affect. Neurosci. 934–944 (2016). [ PMC free article ] [ PubMed ] [ Google Scholar ]
20. A. Dickinson, B. Balleine, The role of learning in the operation of motivational systems, in Stevens’ Handbook of Experimental Psychology (John Wiley & Sons Inc., 2002). [ Google Scholar ]
21. Nili H., Wingfield C., Walther A., Su L., Marslen-Wilson W., Kriegeskorte N., A toolbox for representational similarity analysis . PLOS Comput. Biol. e1003553 (2014). [ PMC free article ] [ PubMed ] [ Google Scholar ]
22. Kriegeskorte N., Mur M., Bandettini P., Representational similarity analysis – connecting the branches of systems neuroscience . Front. Syst. Neurosci. 4 (2008). [ PMC free article ] [ PubMed ] [ Google Scholar ]
23. Daw N. D., Dayan P., The algorithmic anatomy of model-based evaluation . Philos. Trans. R. Soc. B Biol. Sci. 369 , 20130478 (2014). [ PMC free article ] [ PubMed ] [ Google Scholar ]
24. Mante V., Sussillo D., Shenoy K. V., Newsome W. T., Context-dependent computation by recurrent dynamics in prefrontal cortex . Nature 503 , 78–84 (2013). [ PMC free article ] [ PubMed ] [ Google Scholar ]
25. De Martino B., Bobadilla-Suarez S., Nouguchi T., Sharot T., Love B. C., Social information is integrated into value and confidence judgments according to its reliability . J. Neurosci. 6066–6074 (2017). [ PMC free article ] [ PubMed ] [ Google Scholar ]
26. De Martino B., Fleming S. M., Garrett N., Dolan R. J., Confidence in value-based choice . Nat. Neurosci. 105–110 (2013). [ PMC free article ] [ PubMed ] [ Google Scholar ]
27. Polanía R., Woodford M., Ruff C. C., Efficient coding of subjective value . Nat. Neurosci. 134–142 (2019). [ PMC free article ] [ PubMed ] [ Google Scholar ]
28. McNamee D., Rangel A., O’Doherty J. P., Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex . Nat. Neurosci. 479–485 (2013). [ PMC free article ] [ PubMed ] [ Google Scholar ]
29. Clithero J. A., Rangel A., Informatic parcellation of the network involved in the computation of subjective value . Soc. Cogn. Affect. Neurosci. 1289–1302 (2013). [ PMC free article ] [ PubMed ] [ Google Scholar ]
30. Grueschow M., Polania R., Hare T. A., Ruff C. C., Automatic versus choice-dependent value representations in the human brain . Neuron 874–885 (2015). [ PubMed ] [ Google Scholar ]
31. Nichols T., Holmes A. P., Nonparametric permutation tests for functional neuroimaging: A primer with examples . Hum. Brain Mapp. 1–25 (2002). [ PMC free article ] [ PubMed ] [ Google Scholar ]
32. Martin A., The representation of object concepts in the brain . Annu. Rev. Psychol. 25–45 (2007). [ PubMed ] [ Google Scholar ]
33. Baumgartner E., Gegenfurtner K. R., Image statistics and the representation of material properties in the visual cortex . Front. Psychol. 1185 (2016). [ PMC free article ] [ PubMed ] [ Google Scholar ]
34. Rushworth M. F. S., Behrens T. E. J., Choice, uncertainty and value in prefrontal and cingulate cortex . Nat. Neurosci. 389–397 (2008). [ PubMed ] [ Google Scholar ]
35. O’Doherty J. P., Cockburn J., Pauli W. M., Learning, reward, and decision making . Annu. Rev. Psychol. 73–100 (2017). [ PMC free article ] [ PubMed ] [ Google Scholar ]
36. Gilboa A., Marlatte H., Neurobiology of schemas and schema-mediated memory . Trends Cogn. Sci. 618–631 (2017). [ PubMed ] [ Google Scholar ]
37. Jones J. L., Esber G. R., Mc Dannald M. A., Gruber A. J., Hernandez A., Mirenzi A., Schoenbaum G., Orbitofrontal cortex supports behavior and learning using inferred but not cached values . Science 338 , 953–956 (2012). [ PMC free article ] [ PubMed ] [ Google Scholar ]
38. Stalnaker T. A., Cooch N. K., Schoenbaum G., What the orbitofrontal cortex does not do . Nat. Neurosci. 620–627 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
39. Kepecs A., Uchida N., Zariwala H. A., Mainen Z. F., Neural correlates, computation and behavioural impact of decision confidence . Nature 455 , 227–231 (2008). [ PubMed ] [ Google Scholar ]
40. Sescousse G., Redouté J., Dreher J.-C., The architecture of reward value coding in the human orbitofrontal cortex . J. Neurosci. 13095–13104 (2010). [ PMC free article ] [ PubMed ] [ Google Scholar ]
41. Blanchard T. C., Strait C. E., Hayden B. Y., Ramping ensemble activity in dorsal anterior cingulate neurons during persistent commitment to a decision . J. Neurophysiol. 114 , 2439–2449 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
42. Wang M. Z., Hayden B. Y., Reactivation of associative structure specific outcome responses during prospective evaluation in reward-based choices . Nat. Commun. 15821 (2017). [ PMC free article ] [ PubMed ] [ Google Scholar ]
43. Blanchard T. C., Hayden B. Y., Bromberg-Martin E. S., Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity . Neuron 602–614 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
44. Padoa-Schioppa C., Neurobiology of economic choice: A good-based model . Annu. Rev. Neurosci. 333–359 (2011). [ PMC free article ] [ PubMed ] [ Google Scholar ]
45. Lebreton M., Jorge S., Michel V., Thirion B., Pessiglione M., An automatic valuation system in the human brain: Evidence from functional neuroimaging . Neuron 431–439 (2009). [ PubMed ] [ Google Scholar ]
46. Howard J. D., Gottfried J. A., Tobler P. N., Kahnt T., Identity-specific coding of future rewards in the human orbitofrontal cortex . Proc. Natl. Acad. Sci. U.S.A. 112 , 5195–5200 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
47. Rich E. L., Wallis J. D., Decoding subjective decisions from orbitofrontal cortex . Nat. Neurosci. 973–980 (2016). [ PMC free article ] [ PubMed ] [ Google Scholar ]
48. Watanabe M., Reward expectancy in primate prefrontal neurons . Nature 382 , 629–632 (1996). [ PubMed ] [ Google Scholar ]
49. Wallis J. D., Anderson K. C., Miller E. K., Single neurons in prefrontal cortex encode abstract rules . Nature 411 , 953–956 (2001). [ PubMed ] [ Google Scholar ]
50. Kiani R., Shadlen M. N., Representation of confidence associated with a decision by neurons in the parietal cortex . Science 324 , 759–764 (2009). [ PMC free article ] [ PubMed ] [ Google Scholar ]
51. Anderson B. A., Laurent P. A., Yantis S., Value-driven attentional capture . Proc. Natl. Acad. Sci. U.S.A. 108 , 10367–10371 (2011). [ PMC free article ] [ PubMed ] [ Google Scholar ]
52. Nardo D., Santangelo V., Macaluso E., Stimulus-driven orienting of visuo-spatial attention in complex dynamic environments . Neuron 1015–1028 (2011). [ PMC free article ] [ PubMed ] [ Google Scholar ]
53. Saleem A. B., Diamanti E. M., Fournier J., Harris K. D., Carandini M., Coherent encoding of subjective spatial position in visual cortex and hippocampus . Nature 562 , 124–127 (2018). [ PMC free article ] [ PubMed ] [ Google Scholar ]
54. Fournier J., Müller C. M., Schneider I., Laurent G., Spatial information in a non-retinotopic visual cortex . Neuron 164–180.e7 (2018). [ PubMed ] [ Google Scholar ]
55. Cooke S. F., Bear M. F., Visual recognition memory: A view from V1 . Curr. Opin. Neurobiol. 57–65 (2015). [ PMC free article ] [ PubMed ] [ Google Scholar ]
56. Mnih V., Kavukcuoglu K., Silver D., Rusu A. A., Veness J., Bellemare M. G., Graves A., Riedmiller M., Fidjeland A. K., Ostrovski G., Petersen S., Beattie C., Sadik A., Antonoglou I., King H., Kumaran D., Wierstra D., Legg S., Hassabis D., Human-level control through deep reinforcement learning . Nature 518 , 529–533 (2015). [ PubMed ] [ Google Scholar ]
57. J. W. Peirce, M. R. MacAskill, Building experiments in PsychoPy (Sage, 2018). [ Google Scholar ]
58. Walther A., Nili H., Ejaz N., Alink A., Kriegeskorte N., Diedrichsen J., Reliability of dissimilarity measures for multi-voxel pattern analysis . Neuroimage 137 , 188–200 (2016). [ PubMed ] [ Google Scholar ]
59. Wang X., Xu Y., Wang Y., Zeng Y., Zhang J., Ling Z., Bi Y., Representational similarity analysis reveals task-dependent semantic influence of the visual word form area . Sci. Rep. 3047 (2018). [ PMC free article ] [ PubMed ] [ Google Scholar ]
60. Martin C. B., Douglas D., Newsome R. N., Man L. L., Barense M., Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream . eLife e31873 (2018). [ PMC free article ] [ PubMed ] [ Google Scholar ]

Articles from Science Advances are provided here courtesy of American Association for the Advancement of Science