提出了一个简单的协议,被认为是从分不育细胞壁中提取非高血脂化合物的黄金标准方法。显示从四种不同分枝杆菌提取的脂质中,一维和二维 TLC 的进一步可视化。
氯仿和甲醇连续两次结合混合物来恢复支核细胞的脂质含量,是使用最广泛的溶剂混合物23、24、25、26、27、28、29。
这种混合物允许从细胞中恢复广泛的极性和极性脂质。然而,文献中还描述了提取全部或特定的分体脂质的其他方法,哈米德等人最近对此进行了
审查。
例如,Folch 方法是开发用于从
组织 30
中恢复总分分节血脂的最广泛使用的方案之一,并且也已适应纯分菌培养。它包括暂停叶绿素中的分细菌细胞:甲醇(1:2),然后是离心和添加氯仿,以获得1:1的比例。最后,KCl 用于从提取物
31
中去除非脂成分。同时,还制定了其他协议来提取特定的脂质。斯莱
登等人使用
氯仿:甲醇加丙酮的混合物来特别回收乙酰脂,如TDM或TMM
32。
总之,已发表的方法基于将分代细胞暴露在不同浓度溶剂中,主要是氯仿和甲醇。同样,偶尔添加一些盐来丢弃样品上的其他细胞成分。
除了非高血脂外,还显示了通过两种不同程序提取的肌酸。虽然酸性甲酸化物允许使用危险性较小的试剂轻松提取肌酸,但皂化过程保留了所有肌酸类型的结构,包括在甲基甲酸溶解过程中裂开的V型肌酸。提取脂质后,1D 或 2D-TLC 是监测脂质的标准方法,所使用的检测方法因脂质的物理化学特性而异。每个分子的极性和大小将决定所需的洗脱系统的选择,从而确定构成分枝杆菌一部分的脂质。当分代脂质之间的保留因子 (Rf) 不同时,可以选择一维 TLC,而当不同的脂质共享分子量和极性特性时,2D-TLC 可促进可视化。为了便于识别,纯化脂质应与提取的样品同时运行,以比较类似的 Rf。当脂质的运行与已知纯化控制相同的 Rf 运行时,至少可以在两个 TLC 系统(两个不同的移动阶段)中实现脂质的识别。纯化脂质可从商业供应商或分体研究实验室获得。最后,分子的生化性质表明哪些污渍可用于揭示TLC板。有通用的染色方法,如磷酸,它使任何有机成分的可视化可视化,因为它与碳键结合。而其他如石脑或雄胺为糖残留物提供特定的颜色,而蓝色桉糖则特别与磷酸盐残留物结合。
分析分枝杆菌脂质含量的最重要考虑因素是在整个过程中避免使用塑料材料,因为有机溶剂与塑料的接触会污染样品,并且可以在 TLC 板中观察到。还应考虑用于分枝杆菌培养的文化介质成分,以及温度或孵化天数,可以改变每个分枝杆菌的脂质模式,如前所述
16。
生长在液体和固体介质上的分枝杆菌可用于提取非同价相关脂质或肌酸。当从液体培养中获取细胞时,应充分过滤和干燥它们,以避免样品中存在液体介质。此外,在使用液体介质的分枝杆菌时,必须在实验之间适当和均等地生长细菌,以便随着时间的推移获得可重复的结果。此外,分代细胞也可以生长在17,33,34,35,36的颗粒上,从中可以回收最外层的脂质使用有机溶剂和TLC监测,正如我们在本文中显示的。
分子菌脂提取程序的主要限制仍然是在安全条件下使用有毒溶剂。TLC 程序比其他技术(如气相色谱或高性能液相色谱)的敏感度较低。此外,TLC 不允许对样品进行量化,还需要应用进一步技术来识别提取化合物的结构。例如,需要进行核磁共振来区分脂质同位素。值得注意的是,要首次描述支点血脂的结构,需要质谱或红外光谱。因此,脂质类的定量和定性分析通常需要不同的提取、分化、色谱和检测方法的组合,如高性能或超性能液相色谱串联质谱和核磁共振光谱
37、38、39、40。
最近的研究表明,使用单步薄层色谱火焰电离子检测技术,可以量化和初步筛选
Actino菌41
中的肌酸。然而,TLC 是一种极其有用、省时和廉价的技术,用于筛选和评估支原体的脂质成分。总的来说,这里介绍的程序是高度多才多艺的,提供基本工具来分析分枝杆菌细胞的最相关特征:其复杂的细胞壁。
这项研究由西班牙科学、创新和大学部(RTI2018-098777-B-I00)、联邦基金和加泰罗尼亚总务局(2017SGR-229)资助。桑德拉·瓜拉尔-加里多是加泰罗尼亚总务部的博士学位合同(FI)的接受者。
Watanabe, M.,
et al.
Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids.
Microbiology
.
148
(6), 1881-1902 (2002).
Global Health Organization World Health Organization. (2018) Global tuberculosis report.
WHO
. , (2019).
Jackson, M.
The Mycobacterial cell envelope-lipids.
Cold Spring Harbor Perspectives in Medicine
.
4
(10), 1-36 (2014).
Jankute, M.,
et al.
The role of hydrophobicity in tuberculosis evolution and pathogenicity.
Scientific Reports
.
7
(1), 1315 (2017).
Reed, M. B., Gagneux, S., DeRiemer, K., Small, P. M., Barry, C. E.
The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated.
Journal of Bacteriology
.
189
(7), 2583-2589 (2007).
Ly, A., Liu, J.
Mycobacterial virulence factors: Surface-exposed lipids and secreted proteins.
International Journal of Molecular Sciences
.
21
(11), 3985 (2020).
Szulc-Kielbik, I.,
et al.
Severe inhibition of lipooligosaccharide synthesis induces TLR2-dependent elimination of Mycobacterium marinum from THP1-derived macrophages.
Microbial Cell Factories
.
16
(1), 217 (2017).
Ren, H.,
et al.
Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum.
Molecular Microbiology
.
63
(5), 1345-1359 (2007).
Roux, A. L.,
et al.
The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages.
Open Biology
.
6
(11), 160185 (2016).
Guallar-Garrido, S., Julián, E.
Bacillus Calmette-Guérin (BCG) therapy for bladder cancer: An update.
ImmunoTargets and Therapy
.
9
, 1-11 (2020).
Bach-Griera, M.,
et al.
Mycolicibacterium brumae is a safe and non-toxic immunomodulatory agent for cancer treatment.
Vaccines
.
8
(2), 2-17 (2020).
Noguera-Ortega, E.,
et al.
Nonpathogenic Mycobacterium brumae inhibits bladder cancer growth in vitro, ex vivo, and in vivo.
European Urology Focus
.
2
(1), 67-76 (2015).
Noguera-Ortega, E.,
et al.
Mycobacteria emulsified in olive oil-in-water trigger a robust immune response in bladder cancer treatment.
Scientific Reports
.
6
, 27232 (2016).
Rodríguez-Güell, E.,
et al.
The production of a new extracellular putative long-chain saturated polyester by smooth variants of Mycobacterium vaccae interferes with Th1-cytokine production.
Antonie van Leeuwenhoek
.
90
, 93-108 (2006).
Garcia-Vilanova, A., Chan, J., Torrelles, J. B.
Underestimated manipulative roles of Mycobacterium tuberculosis cell envelope glycolipids during infection.
Frontiers in Immunology
.
10
, (2019).
Yang, L.,
et al.
Changes in the major cell envelope components of Mycobacterium tuberculosis during in vitro growth.
Glycobiology
.
23
(8), 926-934 (2013).
Guallar-Garrido, S., Campo-Pérez, V., Sánchez-Chardi, A., Luquin, M., Julián, E.
Each mycobacterium requires a specific culture medium composition for triggering an optimized immunomodulatory and antitumoral effect.
Microorganisms
.
8
(5), 734 (2020).
Venkataswamy, M. M.,
et al.
et al. In vitro culture medium influences the vaccine efficacy of Mycobacterium bovis BCG.
Vaccine
.
30
(6), 1038-1049 (2012).
Secanella-Fandos, S., Luquin, M., Pérez-Trujillo, M., Julián, E.
Revisited mycolic acid pattern of Mycobacterium confluentis using thin-layer chromatography.
Journal of Chromatography B
.
879
, 2821-2826 (2011).
Minnikin, D. E.,
et al.
Analysis of mycobacteria mycolic acids.
Topics in Lipid Research: From Structural Elucidation to Biological Function
. , CPC Press. London, UK. 139-143 (1986).
Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B., Goodfellow, M.
Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria.
Journal of Chromatography A
.
188
(1), 221-233 (1980).
Minnikin, D. E., Goodfellow, M.
Lipid composition in the classification and identification of acid-fast bacteria.
Society for Applied Bacteriology Symposium Series
.
8
, 189-256 (1980).
Muñoz, M.,
et al.
Occurrence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis.
FEMS Microbiology Letters
.
157
(2), 251-259 (1997).
Daffé, M., Lacave, C., Lanéelle, M. A., Gillois, M., Lanéelle, G.
Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus.
European Journal of Biochemistry
.
172
(3), 579-584 (1988).
Singh, P.,
et al.
Revisiting a protocol for extraction of mycobacterial lipids.
International Journal of Mycobacteriology
.
3
(3), 168-172 (2014).
Camacho, L. R.,
et al.
Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier.
Journal of Biological Chemistry
.
276
(23), 19845-19854 (2001).
Dhariwal, K. R., Chander, A., Venkitasubramanian, T. A.
Alterations in lipid constituents during growth of Mycobacterium smegmatis CDC 46 and Mycobacterium phlei ATCC 354.
Microbios
.
16
(65-66), 169-182 (1976).
Chandramouli, V., Venkitasubramanian, T. A.
Effect of age on the lipids of mycobacteria.
Indian Journal of Chest Diseases & Allied Sciences
.
16
, 199-207 (1982).
Hameed, S., Sharma, S., Fatima, Z.
Techniques to understand mycobacterial lipids and use of lipid-based nanoformulations for tuberculosis management.
NanoBioMedicine
. , Springer. Singapore. (2020).
Folch, J., Lees, M., Sloane Stanley, G. H.
A simple method for the isolation and purification of total lipides from animal tissues.
The Journal of Biological Chemistry
.
226
(1), 497-509 (1957).
Pal, R., Hameed, S., Kumar, P., Singh, S., Fatima, Z.
Comparative lipidome profile of sensitive and resistant Mycobacterium tuberculosis strain.
International Journal of Current Microbiology and Applied Sciences
.
1
(1), 189-197 (2015).
Slayden, R. A., Barry, C. E.
Analysis of the lipids of Mycobacterium tuberculosis.
Mycobacterium tuberculosis Protocols
.
54
, 229-245 (2001).
Ojha, A. K.,
et al.
Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria.
Molecular Microbiology
.
69
(1), 164-174 (2008).
Ojha, A. K., Trivelli, X., Guerardel, Y., Kremer, L., Hatfull, G. F.
Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms.
The Journal of Biological Chemistry
.
285
(23), 17380-17389 (2010).
Layre, E.,
et al.
Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells.
Chemistry and Biology
.
16
(1), 82-92 (2009).
Llorens-Fons, M.,
et al.
Trehalose polyphleates, external cell wall lipids in Mycobacterium abscessus, are associated with the formation of clumps with cording morphology, which have been associated with virulence.
Frontiers in Microbiology
.
8
, (2017).
Butler, W. R., Guthertz, L. S.
Mycolic acid analysis by high-performance liquid chromatography for identification of mycobacterium species.
Clinical Microbiology Reviews
.
14
(4), 704-726 (2001).
Teramoto, K.,
et al.
Characterization of mycolic acids in total fatty acid methyl ester fractions from Mycobacterium species by high resolution MALDI-TOFMS.
Mass Spectrometry
.
4
(1), 0035 (2015).
Sartain, M. J., Dick, D. L., Rithner, C. D., Crick, D. C., Belisle, J. T.
Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB".
Journal of Lipid Research
.
52
(5), 861-872 (2011).
Li, M., Zhou, Z., Nie, H., Bai, Y., Liu, H.
Recent advances of chromatography and mass spectrometry in lipidomics.
Analytical and Bioanalytical Chemistry
.
399
(1), 243-249 (2011).
Nahar, A., Baker, A. L., Nichols, D. S., Bowman, J. P., Britz, M. L.
Application of Thin-Layer Chromatography-Flame Ionization Detection (TLC-FID) to total lipid quantitation in mycolic-acid synthesizing Rhodococcus and Williamsia species.
International Journal of Molecular Sciences
.
21
(5), 1670 (2020).
Cite this Article
Guallar-Garrido, S., Luquin, M.,
Julián, E. Analysis of the Lipid Composition of Mycobacteria by Thin Layer Chromatography. J. Vis. Exp. (170), e62368, doi:10.3791/62368 (2021).
…
More
Guallar-Garrido, S., Luquin, M., Julián, E. Analysis of the Lipid Composition of Mycobacteria by Thin Layer Chromatography.
J. Vis. Exp.
(170), e62368, doi:10.3791/62368 (2021).
Less
Copy Citation
Download Citation
Reprints and Permissions
We use/store this info to ensure you have proper access and that your
account is secure. We may use this info to send you notifications about
your account, your institutional access, and/or other related products.
To learn more about our GDPR policies click
here.
If you want more info regarding data storage, please contact
gdpr@jove.com
.
我们使用/存储此信息以确保您具有适当的访问权限并确保您的帐户安全。我们可能会使用此信息向您发送有关您的帐户,您的机构访问权限和/或其他相关产品的通知。要了解有关我们的GDPR政策的更多信息,请点击
这里
.
如果您需要有关数据存储的更多信息,请联系
gdpr@jove.com
。
我们使用/存储此信息以确保您具有适当的访问权限并确保您的帐户安全。我们可能会使用此信息向您发送有关您的帐户,您的机构访问权限和/或其他相关产品的通知。要了解有关我们的GDPR政策的更多信息,请点击
这里
.
如果您需要有关数据存储的更多信息,请联系
gdpr@jove.com
。
我们使用/存储此信息以确保您具有适当的访问权限并确保您的帐户安全。我们可能会使用此信息向您发送有关您的帐户,您的机构访问权限和/或其他相关产品的通知。要了解有关我们的GDPR政策的更多信息,请点击
这里
.
如果您需要有关数据存储的更多信息,请联系
gdpr@jove.com
。
我们使用/存储此信息以确保您具有适当的访问权限并确保您的帐户安全。我们可能会使用此信息向您发送有关您的帐户,您的机构访问权限和/或其他相关产品的通知。要了解有关我们的GDPR政策的更多信息,请点击
这里
.
如果您需要有关数据存储的更多信息,请联系
gdpr@jove.com
。
您已获得2小时免费试用权限,现可观看所有JoVE视频。
验证邮件已发送至您的单位邮箱
email@institution.com
,请按邮件提示激活试用。如未收到邮件,请留意垃圾信箱。
正在等待接收验证邮件?
Your free access has ended.
Thank you for taking us up on our offer of free access to JoVE Education until June 15th.
Your access has now expired.
If you would like to continue using JoVE, please let your librarian know as they consider the most appropriate subscription options for your institution’s academic community.
Provide feedback to your librarian
If you have any questions, please do not hesitate to reach out to our
customer success team
.