相关文章推荐
痴情的签字笔  ·  react ...·  5 月前    · 
从容的碗  ·  Dev ...·  7 月前    · 
可爱的可乐  ·  reactjs - ...·  11 月前    · 

对于二次规划(quadratic programming)和线性规划(Linear Programming)问题
MATLAB里是有 quadprog函数 可以直接用来解决二次规划问题的, linprog函数 来解决线性规划问题。Python中也有很多库用来解决,对于二次规划有CVXOPT, CVXPY, Gurobi, MOSEK, qpOASES 和 quadprog; 对于线性规划有 Gurobi PuLP cvxopt
目前发现quadprog进行 pip install quadprog 不成功,而cvxopt成功了,就先说cvxopt的使用。

conda install -c conda-forge cvxopt

安装非常顺利

cvxopt有自己的matrix格式,因此使用前得包装一下
对于二次规划:

def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None):
    P = .5 * (P + P.T)  # make sure P is symmetric
    args = [cvxopt.matrix(P), cvxopt.matrix(q)]
    if G is not None:
        args.extend([cvxopt.matrix(G), cvxopt.matrix(h)])
        if A is not None:
            args.extend([cvxopt.matrix(A), cvxopt.matrix(b)])
    sol = cvxopt.solvers.qp(*args)
    if 'optimal' not in sol['status']:
        return None
    return np.array(sol['x']).reshape((P.shape[1],))

对于线性规划:

def cvxopt_solve_lp(f, A, b):
    #args = [cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b)]
    #cvxopt.solvers.lp(*args)
    sol = cvxopt.solvers.lp(cvxopt.matrix(f), cvxopt.matrix(A), cvxopt.matrix(b))
    return np.array(sol['x']).reshape((f.shape[0],))

Quadratic Programming in Python
Linear Programming in Python with CVXOPT
cvxopt.org