【CNN常见模型0——储备知识】集成学习原理和Adaboost算法原理
集成学习原理
集成学习(ensemble learning)可以说是现在非常火爆的机器学习方法了。它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。本文就对集成学习的原理做一个总结。
1. 集成学习概述
从下图,我们可以对集成学习的思想做一个概括。对于训练集数据,我们通过训练若干个个体学习器,通过一定的结合策略,就可以最终形成一个强学习器,以达到博采众长的目的。
也就是说,集成学习有两个主要的问题需要解决,第一是如何得到若干个个体学习器,第二是如何选择一种结合策略,将这些个体学习器集合成一个强学习器。
2. 集成学习之个体学习器
上一节我们讲到,集成学习的第一个问题就是如何得到若干个个体学习器。这里我们有两种选择。
第一种就是所有的个体学习器都是一个种类的,或者说是同质的。比如都是决策树个体学习器,或者都是神经网络个体学习器。第二种是所有的个体学习器不全是一个种类的,或者说是异质的。比如我们有一个分类问题,对训练集采用支持向量机个体学习器,逻辑回归个体学习器和朴素贝叶斯个体学习器来学习,再通过某种结合策略来确定最终的分类强学习器。
目前来说,同质个体学习器的应用是最广泛的,一般我们常说的集成学习的方法都是指的同质个体学习器。而同质个体学习器使用最多的模型是CART决策树和神经网络。同质个体学习器按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,一系列个体学习器基本都需要串行生成,代表算法是boosting系列算法,第二个是个体学习器之间不存在强依赖关系,一系列个体学习器可以并行生成,代表算法是bagging和随机森林(Random Forest)系列算法。下面就分别对这两类算法做一个概括总结。
3. 集成学习之boosting
boosting的算法原理我们可以用一张图做一个概括如下:
从图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。
Boosting系列算法里最著名算法主要有AdaBoost算法和提升树(boosting tree)系列算法。提升树系列算法里面应用最广泛的是梯度提升树(Gradient Boosting Tree)。AdaBoost和提升树算法的原理在后面的文章中会专门来讲。
4. 集成学习之bagging
Bagging的算法原理和 boosting不同,它的弱学习器之间没有依赖关系,可以并行生成,我们可以用一张图做一个概括如下:
从上图可以看出,bagging的个体弱学习器的训练集是通过随机采样得到的。通过T次的随机采样,我们就可以得到T个采样集,对于这T个采样集,我们可以分别独立的训练出T个弱学习器,再对这T个弱学习器通过集合策略来得到最终的强学习器。
对于这里的随机采样有必要做进一步的介绍,这里一般采用的是自助采样法(Bootstrap sampling),即对于m个样本的原始训练集,我们每次先随机采集一个样本放入采样集,接着把该样本放回,也就是说下次采样时该样本仍有可能被采集到,这样采集m次,最终可以得到m个样本的采样集,由于是随机采样,这样每次的采样集是和原始训练集不同的,和其他采样集也是不同的,这样得到多个不同的弱学习器。
随机森林是bagging的一个特化进阶版,所谓的特化是因为随机森林的弱学习器都是决策树。所谓的进阶是随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择,其基本思想没有脱离bagging的范畴。bagging和随机森林算法的原理在后面的文章中会专门来讲。
5. 集成学习之结合策略
接下来就对集成学习之结合策略做一个总结。我们假定我得到的T个弱学习器是{h1,h2,...hT}
5.1 平均法
5.2 投票法
5.3 学习法
上两节的方法都是对弱学习器的结果做平均或者投票,相对比较简单,但是可能学习误差较大,于是就有了学习法这种方法,对于学习法,代表方法是stacking,当使用stacking的结合策略时, 我们不是对弱学习器的结果做简单的逻辑处理,而是再加上一层学习器,也就是说,我们将训练集弱学习器的学习结果作为输入,将训练集的输出作为输出,重新训练一个学习器来得到最终结果。
在这种情况下,我们将弱学习器称为初级学习器,将用于结合的学习器称为次级学习器。对于测试集,我们首先用初级学习器预测一次,得到次级学习器的输入样本,再用次级学习器预测一次,得到最终的预测结果。
Adaboost算法原理
我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系。前者的代表算法就是是boosting系列算法。在boosting系列算法中, Adaboost是最著名的算法之一。Adaboost既可以用作分类,也可以用作回归。本文就对Adaboost算法做一个总结。
1. 回顾boosting算法的基本原理
在 集成学习原理 中,我们已经讲到了boosting算法系列的基本思想,如下图:
从图中可以看出,Boosting算法的工作机制是首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。然后基于调整权重后的训练集来训练弱学习器2.,如此重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。
不过有几个具体的问题Boosting算法没有详细说明。
1)如何计算学习误差率e?
2) 如何得到弱学习器权重系数α?
3)如何更新样本权重D?
4) 使用何种结合策略?
只要是boosting大家族的算法,都要解决这4个问题。那么Adaboost是怎么解决的呢?
2. Adaboost算法的基本思路
我们这里讲解Adaboost是如何解决上一节这4个问题的。
3. AdaBoost分类问题的损失函数优化
刚才上一节我们讲到了分类Adaboost的弱学习器权重系数公式和样本权重更新公式。但是没有解释选择这个公式的原因,让人觉得是魔法公式一样。其实它可以从Adaboost的损失函数推导出来。
从另一个角度讲, Adaboost是模型为加法模型,学习算法为前向分步学习算法,损失函数为指数函数的分类问题。
模型为加法模型好理解,我们的最终的强分类器是若干个弱分类器加权平均而得到的。
4. AdaBoost二元分类问题算法流程
这里我们对AdaBoost二元分类问题算法流程做一个总结。
5. Adaboost回归问题的算法流程
这里我们对AdaBoost回归问题算法流程做一个总结。AdaBoost回归算法变种很多,下面的算法为Adaboost R2回归算法过程。
6. Adaboost算法的正则化
7. Adaboost小结
到这里Adaboost就写完了,前面有一个没有提到,就是弱学习器的类型。理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络。对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树。这里对Adaboost算法的优缺点做一个总结。
Adaboost的主要优点有:
1)Adaboost作为分类器时,分类精度很高
2)在Adaboost的框架下,可以使用各种回归分类模型来构建弱学习器,非常灵活。
3)作为简单的二元分类器时,构造简单,结果可理解。
4)不容易发生过拟合
Adaboost的主要缺点有:
1)对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的强学习器的预测准确性。