近日,南方科技大学环境科学与工程学院教授郑一团队在地球科学领域顶级期刊Geophysical Research Letters发表“Ecological Flow Management Identified as Leading Driver of Grassland Greening in the Gobi Desert Using Deep Learning”一文,将深度学习方法创新性地用于草地演化预测,并揭示Earth Greening(全球变绿)在内陆干旱区的新机制。
自上世纪80年代以来,全球陆地植被呈“变绿”趋势,CO
2
施肥效应、水热条件变化,以及大气氮沉降等被认为是主要驱动机制。近年来,我国西北内陆干旱区的草地植被也趋于恢复,但其机制缺乏系统、定量的分析。本研究以2001-2015年生长季获取的Landsat-7 ETM+图像为数据源进行草地覆盖度遥感解译。利用HEIFLOW生态水文模型和RIEMS区域气候模式提供的驱动数据,构建卷积长短时记忆神经网络(ConvLSTM)深度学习模型,实现对黑河流域(我国第二大内陆河流域)下游戈壁地区草地盖度的时空动态预测(图1)。
图1. (a)黑河流域地理位置及研究区位置,(b)主要研究步骤(原文Figure 1a&1b)
研究表明,在遥感大数据的支持下,ConvLSTM深度学习模型可以在1公里空间分辨率上准确刻画研究区草地覆盖度的演变特征(R
2
≃0.92),还能有效预测从裸地与草地相互转化的极端演变情景(R
2
≃0.74)。现有的过程驱动或数据驱动模型难以达到这一准确程度。
图2.研究区草地恢复归因(原文Figure3b)
2001至2015年间,研究区草地面积总面积从568km
2
变为741km
2
,增长了约30%。利用深度学习模型进行归因分析发现,其中62%的植被变化归因于该流域自2000年起实施的生态流量管理(Ecological Flow Regulation, EFR),32%来源于流域中上游自然水文变化产生的跨界影响(Transboundary Hydrological Impact, THI)而研究区当地的气候变化因素(Climate Change, CClocal)仅占23%。EFR和跨界影响均通过恢复研究区地下水而产生作用。
本研究定量揭示了生态流量管理和跨界水文影响的内陆干旱区草地恢复机制,扩展了对全球绿化的认知,也展示了基于大数据的人工智能在生态水文学研究中的巨大潜力,成果对于干旱区植被恢复、水资源管理等具有重要意义。
论文的第一作者为环境科学与工程学院2021级博士生李思齐,郑一为通讯作者,南科大是论文第一单位,共同作者还包括南科大环境科学与工程学院研究副教授韩峰、研究助理教授徐鹏,以及美国科罗拉多州立大学研究员陈安平。该研究得到了中国科学院战略性先导科技专项和国家自然科学基金的支持。
论文链接:
https://doi.org/10.1029/2023GL103369
供稿:环境科学与工程学院
通讯员:晏梓添
主图:丘妍
编辑:朱增光
$(function(){
var title=$("title").html();
var excerpt=$("meta[name='description']").attr("content");
var image="https://newshub.sustech.edu.cn/uploads/large/2023/06/191687140804303361.jpg";
var url = window.location.href;
wxshare(title,excerpt,url,image);
$.ajax({
type: "POST",
url: "/logs",
data: {'url':url},
dataType: "JSON"