-- 设置非空ALTER TABLE TABLE_NAME ALTER COLUMN sno sno的数据类型 NOT NULL;-- 设置唯一ALTER TABLE student ADD UNIQUE (sno)
《
SQL
Server
2008查询性能优化》为你提供了处理查询性能所需要的工具。建立、维护
数据库
和
数据库
服务器可能是个困难的工作。当服务器的运行越来越慢时,这个工作就变得更加困难。来自用户的愤怒的电话以及站在你办公桌周围的管理人员都使你很不快活。在开发代码的同时,如果你花费时间和精力来开发一个性能故障排错的方法。那么你就能避免这种情况——至少可以快速而有效地做出反应。《
SQL
Server
2008查询性能优化》指出的性能要点之一是
数据库
随着用户和数据的日益增多而进行扩展的必要性。你需要理解性能低下的起因。以及识别并修复它们的方法。《
SQL
Server
2008查询性能优化》将帮助你:
使用性能监视器、
SQL
Trace以及动态管理视图和函数建立性能基线
理解一般系统
中
发生瓶颈的地方。以及解决瓶颈的方法
识别常见性能问题以及对其快速处理的方法
实施修复甚至预防性能问题的T-
SQL
最佳实践
《
SQL
Server
2008查询性能优化》不是理论书籍,它的目的是帮助你避免
数据库
出现性能低下的状况,它还能帮助你保住你的工作。
《
SQL
Server
2008查询性能优化》通过大量实例,详细介绍了
SQL
Server
数据库
系统优化的各种方法和技巧。内容涵盖了
数据库
应用系统
中
各种性能瓶颈的表现形式及其发生的根源和解决方法,从硬件瓶颈到查询、索引设计以及
数据库
管理等,贯穿了
数据库
系统知识的各个方面。最后以一个实际的工作负载将所有技巧联系起来,并且提供了“宝典”式的最佳实践列表。
《
SQL
Server
2008查询性能优化》适合于关心
数据库
应用系统性能的开发人员和
数据库
管理人员阅读。通过阅读《
SQL
Server
2008查询性能优化》,不仅可以学习到
数据库
性能管理的许多知识和技巧,还有助于养成良好的编程习惯,为实现高性能的
数据库
应用系统打下基础。
第1章
SQL
查询性能调整 1
1.1 性能调整过程 2
1.1.1 核心过程 2
1.1.2 迭代过程 4
1.2 性能vs.价格 7
1.2.1 性能目标 7
1.2.2 “足够好”的调整 7
1.3 性能基线 8
1.4 工作的重点 9
1.5
SQL
Server
性能杀手 10
1.5.1 低质量的索引 10
1.5.2 不精确的统计 11
1.5.3 过多的阻塞和死锁 11
1.5.4 不基于数据集的操作 11
1.5.5 低质量的查询设计 12
1.5.6 低质量的
数据库
设计 12
1.5.7 过多的碎片 12
1.5.8 不可重用的执行计划 13
1.5.9 低质量的执行计划 13
1.5.10 频繁重编译计划 13
1.5.11 游标的错误使用 13
1.5.12 错误配置
数据库
日志 14
1.5.13 过多使用或者错误配置tempdb 14
1.6 小结 14
第2章 系统性能分析 15
2.1 性能监视器工具 15
2.2 动态管理视图 17
2.3 硬件资源瓶颈 18
2.3.1 识别瓶颈 18
2.3.2 瓶颈解决方案 19
2.4 内存瓶颈分析 19
2.4.1
SQL
Server
内存管理 20
2.4.2 Available Bytes 23
2.4.3 Pages/sec和Page Faults/sec计数器 23
2.4.4 Buffer Cache Hit Ratio 24
2.4.5 Page Life Expectancy 24
2.4.6 Checkpoint Pages/sec 24
2.4.7 Lazy writes/sec 24
2.4.8 Memory Grants Pending 25
2.4.9 Target
Server
Memory(KB)和Total
Server
Memory(KB) 25
2.5 内存瓶颈解决方案 25
2.5.1 优化应用程序工作负载 26
2.5.2 为
SQL
Server
分配更多内存 27
2.5.3
增加
系统内存 27
2.5.4 更换32位处理器为64位处理器 27
2.5.5 启用3GB进程
空
间 28
2.5.6 在32位
SQL
Server
中
使用4GB以上内存 28
2.6 磁盘瓶颈分析 29
2.6.1 磁盘计数器 30
2.6.2 % Disk Time 30
2.6.3 Current Disk Queue Length 31
2.6.4 Disk Transfers/sec 31
2.6.5 Disk Bytes/sec 32
2.6.6 Avg. Disk Sec/Read和Avg. Disk Sec/Write 32
2.7 磁盘瓶颈解决方案 32
2.7.1 优化应用程序工作负载 33
2.7.2 使用更快的磁盘驱动器 33
2.7.3 使用一个RAID阵列 33
2.7.4 使用SAN系统 35
2.7.5 恰当地对齐磁盘 35
2.7.6 使用电池后备的控制器缓存 36
2.7.7 添加系统内存 36
2.7.8 创建多个文件和文件组 36
2.7.9 将表和索引放在不同的磁盘上 39
2.7.10 将日志文件保存到独立的物理磁盘 39
2.7.11 表的分区 40
2.8 处理器瓶颈分析 40
2.8.1 % Processor Time 41
2.8.2 % Privileged Time 41
2.8.3 Processor Queue Length 42
2.8.4 Context Switches/sec 42
2.8.5 Batch Requests/sec 42
2.8.6
SQL
Compilations/sec 42
2.8.7
SQL
Recompilations/sec 43
2.9 处理器瓶颈解决方案 43
2.9.1 优化应用程序工作负载 43
2.9.2 消除过多的编译/重编译 43
2.9.3 使用更多或更快的处理器 44
2.9.4 使用大的二级(L2)/三级(L3)缓存 44
2.9.5 运行更高效的控制器/驱动程序 44
2.9.6 不运行不必要的软件 45
2.10 网络瓶颈分析 45
2.10.1 Bytes Total/sec 45
2.10.2 % Net Utilization 46
2.11 网络瓶颈解决方案 46
2.11.1 优化应用程序工作负载 46
2.11.2
增加
网络适配器 47
2.11.3 节制和避免
中
断 47
2.12
SQL
Server
总体性能 47
2.12.1 丢失索引 48
2.12.2
数据库
阻塞 49
2.12.3 不可重用的执行计划 50
2.12.4 总体表现 50
2.13 创建一个基线 51
2.13.1 创建性能计数器的一个可重用列表 51
2.13.2 使用性能计数器列表创建一个计数器日志 54
2.13.3 最小化性能监视器开销 55
2.14 以基线为标准的系统状态分析 56
2.15 小结 57
第3章
SQL
查询性能分析 58
3.1
SQL
Profiler工具 58
3.1.1 Profiler跟踪 59
3.1.2 事件 60
3.1.3 数据列 62
3.1.4 过滤器 64
3.1.5 跟踪模板 65
3.1.6 跟踪数据 65
3.2 跟踪的自动化 66
3.2.1 使用GUI捕捉跟踪 66
3.2.2 使用存储过程捕捉跟踪 67
3.3 结合跟踪和性能监视器输出 68
3.4
SQL
Profiler建议 69
3.4.1 限制事件和数据列 69
3.4.2 丢弃性能分析所用的启动事件 70
3.4.3 限制跟踪输出大小 70
3.4.4 避免在线数据列排序 71
3.4.5 远程运行Profiler 71
3.4.6 限制使用某些事件 71
3.5 没有Profiler情况下的查询性能度量 71
3.6 开销较大的查询 72
3.6.1 识别开销较大的查询 73
3.6.2 识别运行缓慢的查询 77
3.7 执行计划 78
3.7.1 分析查询执行计划 80
3.7.2 识别执行计划
中
开销较大的步骤 82
3.7.3 分析索引有效性 83
3.7.4 分析连接有效性 84
3.7.5 实际执行计划vs.估算执行计划 88
3.7.6 计划缓存 89
3.8 查询开销 90
3.8.1 客户统计 90
3.8.2 执行时间 91
3.8.3 STATISTICS IO 92
3.9 小结 94
第4章 索引分析 95
4.1 什么是索引 95
4.1.1 索引的好处 97
4.1.2 索引开销 98
4.2 索引设计建议 100
4.2.1 检查WHERE子句和连接条件列 100
4.2.2 使用窄索引 102
4.2.3 检查列的唯一性 103
4.2.4 检查列数据类型 106
4.2.5 考虑列顺序 107
4.2.6 考虑索引类型 109
4.3 聚簇索引 109
4.3.1 堆表 110
4.3.2 与非聚簇索引的关系 110
4.3.3 聚簇索引建议 112
4.4 非聚簇索引 117
4.4.1 非聚簇索引维护 117
4.4.2 定义书签查找 117
4.4.3 非聚簇索引建议 118
4.5 聚簇索引vs.非聚簇索引 118
4.5.1 聚簇索引相对于非聚簇索引的好处 119
4.5.2 非聚簇索引相对于聚簇索引的好处 120
4.6 高级索引技术 121
4.6.1 覆盖索引 122
4.6.2 索引交叉 124
4.6.3 索引连接 125
4.6.4 过滤索引 126
4.6.5 索引视图 128
4.6.6 索引压缩 132
4.7 特殊索引类型 134
4.7.1 全文索引 134
4.7.2
空
间索引 135
4.7.3 XML 135
4.8 索引的附加特性 135
4.8.1 不同的列排序顺序 135
4.8.2 在计算列上的索引 136
4.8.3 BIT数据类型列上的索引 136
4.8.4 作为一个查询处理的CREATE INDEX语句 136
4.8.5 并行索引创建 136
4.8.6 在线索引创建 137
4.8.7 考虑
数据库
引擎调整顾问 137
4.9 小结 137
第5章
数据库
引擎调整顾问 139
5.1
数据库
引擎调整顾问机制 139
5.2
数据库
引擎调整顾问实例 143
5.2.1 调整一个查询 143
5.2.2 调整一个跟踪工作负载 146
5.3
数据库
引擎调整顾问的局限性 148
5.4 小结 149
第6章 书签查找分析 150
6.1 书签查找的目的 150
6.2 书签查找的缺点 152
6.3 分析书签查找的起因 153
6.4 解决书签查找 155
6.4.1 使用一个聚簇索引 155
6.4.2 使用一个覆盖索引 155
6.4.3 使用索引连接 158
6.5 小结 160
第7章 统计分析 161
7.1 统计在查询优化
中
的角色 161
7.2 索引列上的统计 162
7.2.1 更新统计的好处 162
7.2.2 过时统计的缺点 164
7.3 在非索引列上的统计 165
7.3.1 在非索引列上统计的好处 166
7.3.2 丢失非索引列上的统计的缺点 169
7.4 分析统计 172
7.4.1 密度 174
7.4.2 多列索引上的统计 174
7.4.3 过滤索引上的统计 175
7.5 统计维护 176
7.5.1 自动维护 177
7.5.2 人工维护 179
7.5.3 统计维护状态 181
7.6 为查询分析统计的有效性 182
7.6.1 解决丢失统计问题 182
7.6.2 解决过时统计问题 184
7.7 建议 186
7.7.1 统计的向后兼容性 186
7.7.2 自动创建统计 186
7.7.3 自动更新统计 187
7.7.4 自动异步更新统计 189
7.7.5 收集统计的采样数量 189
7.8 小结 190
第8章 碎片分析 191
8.1 碎片的成因 191
8.1.1 UPDATE语句引起的页面分割 193
8.1.2 INSERT语句引起的页面分割 196
8.2 碎片开销 197
8.3 分析碎片数量 200
8.4 碎片解决方案 204
8.4.1 卸载并重建索引 204
8.4.2 使用DROP_EXISTING子句重建索引 205
8.4.3 执行ALTER INDEX REBUILD语句 205
8.4.4 执行ALTER INDEX REORGANIZE语句 207
8.5 填充因子的重要性 209
8.6 自动维护 212
8.7 小结 217
第9章 执行计划缓冲分析 218
9.1 执行计划生成 218
9.1.1 解析器 219
9.1.2 代数化器 220
9.1.3 优化 221
9.2 执行计划缓冲 227
9.3 执行计划组件 227
9.3.1 查询计划 227
9.3.2 执行上下文 227
9.4 执行计划的老化 228
9.5 分析执行计划缓冲 228
9.6 执行计划重用 229
9.6.1 即席工作负载 230
9.6.2 预定义工作负载 231
9.6.3 即席工作负载的计划可重用性 231
9.6.4 预定义工作负载的计划可重用性 239
9.7 查询计划Hash和查询Hash 248
9.8 执行计划缓冲建议 251
9.8.1 明确地参数化查询的可变部分 252
9.8.2 使用存储过程实现业务功能 252
9.8.3 使用sp_execute
sql
编程以避免存储过程维护 252
9.8.4 实现准备/执行模式以避免重传查询字符串 253
9.8.5 避免即席查询 253
9.8.6 对于动态查询sp_execute
sql
优于EXECUTE 253
9.8.7 小心地参数化查询的可变部分 254
9.8.8 不要允许查询
中
对象的隐含解析 254
9.9 小结 254
第10章 存储过程重编译 256
10.1 重编译的好处和缺点 256
10.2 确认导致重编译的语句 258
10.3 分析重编译起因 260
10.3.1 架构或绑定变化 261
10.3.2 统计变化 261
10.3.3 延迟对象解析 264
10.3.4 SET选项变化 266
10.3.5 执行计划老化 266
10.3.6 显式调用sp_recompile 267
10.3.7 显式使用RECOMPILE子句 268
10.4 避免重编译 269
10.4.1 不要交替使用DDL和DML语句 270
10.4.2 避免统计变化引起的重编译 271
10.4.3 使用表变量 273
10.4.4 避免在存储过程
中
修改SET选项 275
10.4.5 使用OPTIMIZE FOR查询提示 276
10.4.6 使用计划指南 277
10.5 小结 281
第11章 查询设计分析 282
11.1 查询设计建议 282
11.2 在小结果集上操作 283
11.2.1 限制选择列表
中
的列数 283
11.2.2 使用高选择性的WHERE子句 284
11.3 有效地使用索引 284
11.3.1 避免不可参数化的搜索条件 285
11.3.2 避免WHERE子句列上的算术运算符 289
11.3.3 避免WHERE子句列上的函数 290
11.4 避免优化器提示 292
11.4.1 连接提示 293
11.4.2 索引提示 295
11.5 使用域和参照完整性 296
11.5.1
非空
约束
297
11.5.2 声明参照完整性 299
11.6 避免资源密集型查询 301
11.6.1 避免数据类型转换 301
11.6.2 使用EXISTS代替COUNT(*)验证数据存在 303
11.6.3 使用UNION ALL代替UNION 304
11.6.4 为聚合和排序操作使用索引 305
11.6.5 避免在批查询
中
的局部变量 306
11.6.6 小心地命名存储过程 309
11.7 减少网络传输数量 311
11.7.1 同时执行多个查询 311
11.7.2 使用SET NOCOUNT 311
11.8 降低事务开销 312
11.8.1 减少日志开销 312
11.8.2 减少锁开销 314
11.9 小结 315
第12章 阻塞分析 316
12.1 阻塞基础知识 316
12.2 理解阻塞 317
12.2.1 原子性 317
12.2.2 一致性 320
12.2.3 隔离性 320
12.2.4 持久性 321
12.3
数据库
锁 321
12.3.1 锁粒度 322
12.3.2 锁升级 325
12.3.3 锁模式 326
12.3.4 锁兼容性 332
12.4 隔离级别 332
12.4.1 未提交读 333
12.4.2 已提交读 333
12.4.3 可重复读 335
12.4.4 可序列化(Serializable) 338
12.4.5 快照(Snapshot) 343
12.5 索引对锁的作用 343
12.5.1 非聚簇索引的作用 344
12.5.2 聚簇索引的作用 346
12.5.3 索引在可序列化隔离级别上的作用 346
12.6 捕捉阻塞信息 347
12.6.1 使用
SQL
捕捉阻塞信息 347
12.6.2 Profiler跟踪和被阻塞进程报告事件 349
12.7 阻塞解决方案 351
12.7.1 优化查询 352
12.7.2 降低隔离级别 352
12.7.3 分区争用的数据 353
12.7.4 争用数据上的覆盖索引 354
12.8 减少阻塞的建议 354
12.9 自动化侦测和收集阻塞信息 355
12.10 小结 359
第13章 死锁分析 360
13.1 死锁基础知识 360
13.2 使用错误处理来捕捉死锁 361
13.3 死锁分析 362
13.3.1 收集死锁信息 362
13.3.2 分析死锁 364
13.4 避免死锁 368
13.4.1 按照相同的时间顺序访问资源 368
13.4.2 减少被访问资源的数量 369
13.4.3 最小化锁的争用 369
13.5 小结 370
第14章 游标开销分析 372
14.1 游标基础知识 372
14.1.1 游标位置 373
14.1.2 游标并发性 374
14.1.3 游标类型 376
14.2 游标开销比较 378
14.2.1 游标位置的开销比较 378
14.2.2 游标并发性上的开销比较 380
14.2.3 在游标类型上的开销比较 381
14.3 默认结果集 383
14.3.1 好处 384
14.3.2 缺点 384
14.4 分析
SQL
Server
游标开销 386
14.5 游标建议 390
14.6 小结 392
第15章
数据库
工作负载优化 393
15.1 工作负载优化基础知识 393
15.2 工作负载优化步骤 394
15.3 捕捉工作负载 397
15.4 分析工作负载 399
15.5 识别开销最大的查询 400
15.6 确定开销最大的查询的基线资源使用 402
15.6.1 总体资源使用 402
15.6.2 详细资源使用 402
15.7 分析和优化外部因素 405
15.7.1 分析应用程序使用的批级别选项 405
15.7.2 分析统计有效性 406
15.7.3 分析碎片整理需求 406
15.8 分析开销最大的查询的内部行为 410
15.8.1 分析查询执行计划 410
15.8.2 识别执行计划
中
开销较大的步骤 412
15.8.3 分析处理策略的效率 412
15.9 优化代价最大的查询 412
15.9.1 修改现有索引 413
15.9.2 分析连接提示的应用 415
15.9.3 避免聚簇索引扫描操作 417
15.9.4 修改过程 418
15.10 分析对
数据库
工作负载的影响 420
15.11 迭代各个优化阶段 421
15.12 小结 424
第16章
SQL
Server
优化检查列表 425
16.1
数据库
设计 425
16.1.1 平衡不足和过多的规范化 426
16.1.2 从实体完整性
约束
中
得利 427
16.1.3 从域和参照完整性
约束
中
得利 428
16.1.4 采用索引设计最佳实践 430
16.1.5 避免在存储过程名称
中
使用sp_前缀 431
16.1.6 最小化触发器的使用 431
16.2 查询设计 432
16.2.1 使用SET NOCOUNT ON命令 432
16.2.2 显式定义对象所有者 432
16.2.3 避免不可参数化的搜索条件 432
16.2.4 避免WHERE子句列上的算术运算符 433
16.2.5 避免优化器提示 434
16.2.6 远离嵌套视图 434
16.2.7 确保没有隐含的数据类型转换 435
16.2.8 最小化日志开销 435
16.2.9 采用重用执行计划的最佳实践 435
16.2.10 采用
数据库
事务最佳实践 436
16.2.11 消除或减少
数据库
游标开销 437
16.3 配置
设置
437
16.3.1 Affinity Mask 437
16.3.2 内存配置选项 437
16.3.3 并行性开销阈值 438
16.3.4 最大并行度 438
16.3.5 优化即席工作负载 438
16.3.6 查询调控器开销限制 439
16.3.7 填充因子(%) 439
16.3.8 被阻塞过程阈值 439
16.3.9
数据库
文件布局 439
16.3.10
数据库
压缩 440
16.4
数据库
管理 440
16.4.1 保持统计最新 440
16.4.2 保持最小数量的索引碎片数量 441
16.4.3 循环使用
SQL
错误日志文件 441
16.4.4 避免像AUTO_CLOSE或AUTO_SHRINK这样的自动化
数据库
功能 441
16.4.5 最小化
SQL
跟踪开销 442
16.5
数据库
备份 442
16.5.1 增量和事务日志备份频率 442
16.5.2 备份分布 443
16.5.3 备份压缩 444
16.6 小结 444
作者:(美国)弗里奇(Grant Fritchey) (美国)达姆(Sajal Dam) 译者:姚军
弗里奇(Grant Fritchey),为FM Global(一家行业领先的工程和保险公司)工作,担任首席DBA。他使用各种语言(如VB、C#和Java等)开发了许多大规模的应用程序,从版本6.0开始使用
SQL
Server
。他曾经为3家失败的.com公司担任财务和咨询工作,还是Dissecting
SQL
Server
Execution Plans一书的作者。
达姆(Sajal Dam),拥有位于印度班加罗尔的印度理工学院的计算机科学技术硕士学位,并且使用微软技术超过16年。他已经在设计
数据库
应用和管理软件开发方面拥有了很广泛的背景。Saial还在从前端网页到后端
数据库
的基于微软技术的应用程序上,具备了故障定位和性能优化的大量经验。他有许多为《财富》500强公司设计可伸缩的
数据库
解决方案和最大化
数据库
环境性能的经验。
1.
非空
约束
not null:数据不能为
空
2.主键
约束
primary key(列名):保证记录唯一性,要求值必须唯一且不能为
空
;一个表只能有一个主键
GroupId int identity(1001,1) primary key
3.外键
约束
foreign key references 表名(列名)
OwnerUserId int not null foreign key references Users(UserId)
外键后面添加on delete[updte] cascade,则为级联删除或修改,删除主表记录,从表
中
相应记录同时也会删除
4.自增长identity(开始值,增长因
实体完整性:主键
约束
(primary key)、
唯一约束
(unique) 、自动增长列(auto_increment)
域完整性:数据类型、
非空
约束
(not null)、默认值
约束
(default)
引用完整性 :外键
约束
:FOREIGN KEY
一、 实...
2单选(2分)
在执行添加数据时出现“Field ‘name’ doesn’t have a default value”错误,可能导致错误的原因是()
A.name字段指定了默认值,且添加了NOT NULL
约束
B.name字段没有指定默认值,且添加了NOT NULL
约束
C.name字段指定了默认值
D.INSERT 语句出现了语法问题
3单选(2分)
@author StormWangxhu
@date 2017/11/23首先介绍一下查询语句:SELECT * FROM 表名
[where 条件表达式 ];添加数据
SQL
语句:
INSERT INTO 语句1、为表
中
所有的字段添加数据向表
中
添加的数据称之为记录。两种方式:方式一:insert语句
中
指定所有字段名在insert 语句
中
列出表
中
的所有字段名,其值与其字段名、类型要一一对应!
接上,现有两张表,department和employee
1、为department的manager添加唯一性
约束
,保证manager列
中
不出现重复值(unique_manager是随便
设置
的
约束
名称)
alter table department
add constraint unique_manager unique(manager);
关于唯一性
约束
的各种用法UNIQUE使用
2、将Ge...
今天同学向我提了一个问题,我觉得蛮有意思,现记录下来大家探讨下。
问题是:在一个表里面,有一个允许为
空
的字段,
空
是可以重复的,但是
不为
空
的值需要唯一。
表结构如下面代码创建
CREATETABLEtest_tb(TestIdintnotnullidentity(1,1)primarykey,Captionnvarchar(100)null);GO
可以使用 ALTER TABLE 语句来添加
非空
约束
,例如:
ALTER TABLE table_name ALTER COLUMN column_name data_type NOT NULL;
其
中
,table_name 是要添加
非空
约束
的表名,column_name 是要添加
非空
约束
的列名,data_type 是该列的数据类型。