相关文章推荐
腹黑的槟榔  ·  Invalid header ...·  7 月前    · 
低调的鸵鸟  ·  ax.set_xticklabels ...·  1 年前    · 
另类的热水瓶  ·  win10专业版安装.net ...·  1 年前    · 

GPU环境准备


如果你有一台带N卡的个人电脑的话,那么是不需要买GPU云服务器的。如果你的公司或实验室有GPU服务器这个福利或资源的话,那么玩玩GPU服务器也不错。


GPU服务器选择


目前云服务厂商基本都有售卖GPU云服务器,比如腾讯云和阿里云,以腾讯云为例,登录这个网址: https://cloud.tencent.com/product/gpu 点击【立即选购】可以进入选购页面。每种机型又对应不同的规格。基本上同机型(比如GN7)他们的显卡型号都是相同的,该机型下的不同规格(比如GN7.LARGE20、GN7.2XLARGE32)只是在CPU、内存、带宽以及显卡个数方面不同而已。下面简单列一下机型与显卡的对应关系(截至2022年5月):


机型 显卡
GN6 Tesla P4
GN6S Tesla P4
GN7 NVIDIA T4
GN8 Tesla P40
GN10X Tesla V100
GN10Xp Tesla V100
GI3X NVIDIA T4
GT4 NVIDIA A100
GI1 Intel SG1加速卡


显卡型号知识


我们忽略Intel的那个,其余的显卡都是NVIDIA(英伟达)的显卡,也就是常说的N卡。NVIDIA牢牢抓住了人工智能爆发的浪潮,推出了CUDA、TensorRT等一系列开发框架,为GPU编程提供了便利,黄仁勋也因此赚的盆满钵满。


这里面没有我们日常所说的Geforce系列的GTX、RTX那种显卡。因为Geforce系列是桌面端的(笔记本/台式机)显卡,而这里面显卡是服务端(数据中心/工作站)的显卡。就好比我们个人电脑上的CPU是Intel酷睿(Core)系列,而公司服务器上的CPU是Intel至强(Xeon)系列。


当然并不能说服务端的这些显卡就一定比桌面端的显卡性能更好,具体还是要看算力,显卡的算力信息可以在NVIDIA的官网上查到: https://developer.nvidia.com/cuda-gpus



我的显卡是Tesla P4,算力是6.1


好了,让我们略过服务器选购的具体细节,其实这一步最大的阻碍不是算力,而是钱啦。也略过云服务器初始化的步骤,那和普通的云服务器没有差别,都是选择一台Linux然后初始化一些配置而已。


另外如果你没有购买云服务器,而是有一个装有N卡的个人电脑,那么下面的内容同样适用于你。


驱动安装


新的GPU服务器虽然有显卡,但是是没有显卡驱动的。这里需要我们手动安装一下。首先去NVIDIA官网去下载驱动:


https://www.nvidia.cn/Download/index.aspx?lang=cn


主要根据你的系统类型以及你的显卡型号(产品系列与产品家族)来选择:


640.png


点【搜索】


640.png


点【下载】


640.png


这一步不用点【下载】,因为我们是给云服务器(或者你本地的Linux虚拟机)安装显卡。所以右键复制下载链接,然后再服务器上wget下载,然后运行:


wget https://cn.download.nvidia.com/tesla/510.47.03/NVIDIA-Linux-x86_64-510.47.03.run
chmod a+x NVIDIA-Linux-x86_64-510.47.03.run
./NVIDIA-Linux-x86_64-510.47.03.run


执行以后就会开始安装,期间可能收到提示:服务器上gcc版本(比如gcc8.5)和编译kernel的gcc版本(比如gcc8.4)不一致的警告。版本号差异不大的话就忽略,否则可能需要重新安装一个同版本的gcc编译器。


执行完成后怎么确认驱动安装是OK的呢?我们可以执行一下 nvidia-smi 这个命令。


nvidia-smi


输出如下:


+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P4            Off  | 00000000:00:08.0 Off |                    0 |
| N/A   35C    P0    21W /  75W |      0MiB /  7680MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+


能展示出信息,就是驱动安装OK了。怎么来解读这个信息呢。以中间的空行分隔,可以把整个信息分成三个部分。先说第一部分,也就是第一行:


  • nvidia-smi命令的版本
  • 显卡驱动的版本
  • cuda的版本


第二部分,也就是第二行到空行之间的部分,这是一个显卡新的表格,===这行上面是表头,下面是表数据。这里只有一张显卡,如果有多张显卡,下面会追加几行。上图的第二部分,我换个形式会更好理解:


表头 数据 含义
GPU 0 显卡ID,从0计数
Fan N/A 风扇转速
Name Tesla P4 显卡型号
Temp 35C 温度
Perf P0 性能级别,从大到小为P0~P12
Persistence-M Off 是否是持续模式
Pwr:Usage/Cap 21W/75W 能耗
Bus-Id 00000000:00:08.0 GPU总线ID
Disap.A Off Disaplay Active,GPU的显示是否初始化
Memory-Usage 0MiB/7680MiB 显存使用率
Volatile GPU-Util 0 GPU利用率
Uncorr. ECC 0 ECC,错误检查与纠正
Compute M. Default 计算模式
MIG M. N/A MIG模式


Persistence-M(持续模式)开启之后能耗会增加,但是新GPU程序启动的耗时会减少。如果它的状态是Off,可以使用这个命令来开启:


nvidia-smi -pm 1


注意Memory-Usage(显存使用率)和GPU-Util(GPU利用率)没有必要联系。就好比内存使用率和CPU的使用率也没有必然联系一样!


MIG M.是一个比较新的数据,在老版本的nvidia-smi上是没有这个信息的,对我们来说不用特别关注,感兴趣的可以阅读: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html


nvidia-smi的第三部分,比较好理解,就是当前使用了GPU的进程信息。由于我们还没有使用GPU跑程序,所以这里是空的:


表头 含义
GPU 显卡ID
PID 进程ID
TYPE 类型。C:计算进程,G:图形进程,C+G:计算与图形都有
Process name 进程名
GPU Memory Usage 进程的显卡使用率


GI ID、CI ID目前没找到资料,这个也是新版本nvidia-smi新加的,旧版本都是没有的。暂时忽略。


跑一个机器学习任务


conda安装


说到机器学习,自然少不了python。而conda也少不了。conda是一个python的环境管理器,也包含包管理功能,比pip更强大。一般有图形界面的个人电脑上装Anaconda比较好,因为有GUI,各种操作比较方便。但是云服务器上就没必要装Anaconda了,直接装无图形界面miniconda就好了。地址如下:


https://docs.conda.io/en/latest/miniconda.html


640.png


同样使用右键复制下来下载地址,然后在服务器上下载并执行:


wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod a+x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh


这也就完成了安装,接着加载一下环境变量。比如:


source ~/.bashrc


或者


source ~/.zshrc


添加国内conda源


可以给conda添加国内的源来加快下载速度。比如清华的源。之前也有中科大的源,目前好像已经失效了。


conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/


创建一个conda环境


接下来我们要跑pytorch程序,所以使用conda创建一个环境,名称任意,我这里叫 pytorch_gpu


conda create -n pytorch_gpu 
conda activate pytorch_gpu


目前是一个空环境,还没有安装pytorch


安装pytorch


执行如下命令,来安装pytorch及其依赖环境:


conda install pytorch torchvision torchaudio cudatoolkit=11.3


实际本机cuda是11.6,但是pytorch当前(2022年5月)最新的还是11.3。应该没关

系。后续大家动态调整适合的版本即可。也可以参考官网的指引:


https://pytorch.org/get-started/locally/ 选择相应的环境,会生成对应的命令。


640.png


但官网上的conda命令还有一个 -c pytorch 。-c是指定一个conda channel的意思,这里表示指定pytorch的channel,但是这个channel下载太慢了,实测去掉 -c pytorch 会使得下载提速。


conda命令完成执行,测试是否安装成功。可以编写如下python脚本来执行,或者直接打开python交互式命令:


import torch
print(torch.cuda.is_available())


import能成功,并且第二行代码返回 True 。表示安装成功,并且是支持GPU的pytorch。


训练模型


由于我本人并不是机器学习方面的专家,所以我决定直接网上找一个能用的pytorch训练模型的代码。这里我选择了BERT模型,BERT模型是谷歌提出的一个NLP领域的经典模型。这里不展开这些背景知识。


经过一番简单的搜索,我在Github上找到了这个排名比较靠前的pytorch bert相关的项目: https://github.com/649453932/Bert-Chinese-Text-Classification-Pytorch

将项目clone下来,然后依据README,下载所需要的数据文件:一个是预训练的pytorch模型文件bert-base-chinese.tar.gz,另外一个是词典文件bert-base-chinese-vocab.txt。


模型文件解压后其实得到2个文件,一个是二进制的模型文件本身pytorch_model.bin,另外一个是模型的配置文件bert_config.json。都拷贝到项目的bert_pretrain目录中。词典文件改名成vocab.txt也放到bert_pretrain目录中。


在正式使用之前,我们在环境中再安装几个依赖的库:


conda install scikit-learn boto3 regex
conda install -c conda-forge tqdm


pytorch_pretrained_bert我使用pip安装的,因为conda中我没找到对应的包。


接着创建一个目录:


mkdir -p THUCNews/saved_dict


BERT模型的训练过程一般分为预训练(Pre-training)+ 微调(Fine-tuning)两步。我们下载的模型已经是预训练模型了,但他还不是最终的模型,还需要继续训练,也就是微调。运行脚本,开始训练:


python run.py --model bert


这一步其实挺慢的。原作者说他2080Ti的显卡,要跑20分钟。2080Ti是桌面端的显卡,通过前文提到的算力查看网站,能看到2080Ti的算力是7.5,比我云服务器的Tesla P4还高……


640.png


我们此时可以再次执行 nvidia-smi 命令来查看一下:


+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P4            On   | 00000000:00:08.0 Off |                    0 |
| N/A   69C    P0    66W /  75W |   6941MiB /  7680MiB |     90%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A    309535      C   python                           6939MiB |
+-----------------------------------------------------------------------------+


可以发现第三部分的进程信息不再是空了,能看到一个PID为309535的进程在使用GPU,进程名是python占用显存6939MB。总的Memory-Usage是6941MB。二者几乎一样。


最终在我的云服务器上跑了75分钟…… 好吧。


模型预测


上面的脚本执行完成后,会训练出一个最终的模型,保存到THUCNews/saved_dict/bert.ckpt中。接下来我们尝试使用这个模型做一下预测。原项目中作者没有封装预测的代码,但我们可以从项目issue中找到其他人分享的预测代码。比如这个: https://github.com/649453932/Bert-Chinese-Text-Classification-Pytorch/issues/72


把代码复制下来保存成 pred.py 。另外这个issue中的预测代码运行过程中可能报这个错


RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper__index_select)


同样参考issue中其他网友提供的解决方案。修改build_predict_text() 方法中的ids、token、mask的代码,加上.cuda()即可:


ids = torch.LongTensor([token_ids]).cuda()
    seq_len = torch.LongTensor([seq_len]).cuda()
    mask = torch.LongTensor([mask]).cuda()


由于训练模型时用的数据集是新闻及其分类,所以模型的预测功能就是对新闻做分类。现在我们找一条最近的新闻来做一下预测。


热搜里找到一条新闻:【兰州野生动物园观光车侧翻事故新进展:2人经抢救无效死亡】新闻时间是2022年5月2日,模型训练用的数据集是2019年的,所以肯定不包含这条新闻。让我们来看看它能不能准确分类。修改main函数:


if __name__ == '__main__':
    print(predict("兰州野生动物园观光车侧翻事故新进展:2人经抢救无效死亡"))


运行一下我们的pred.py得到结果:


society


也就是社会新闻,还是比较准的。

【Pytorch神经网络理论篇】 02 Pytorch快速上手(二)GPU与CPU张量切换+具有随机值的张量+张量的数学运算
【Pytorch神经网络理论篇】 02 Pytorch快速上手(二)GPU与CPU张量切换+具有随机值的张量+张量的数学运算
【Pytorch神经网络实战案例】01 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法①
【Pytorch神经网络实战案例】01 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法①
【Pytorch神经网络实战案例】02 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法②
【Pytorch神经网络实战案例】02 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法②
【Pytorch神经网络实战案例】03 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-测试方法
【Pytorch神经网络实战案例】03 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-测试方法
在 PyTorch 中使用梯度检查点在GPU 上训练更大的模型
本文将介绍解梯度检查点(Gradient Checkpointing),这是一种可以让你以增加训练时间为代价在 GPU 中训练大模型的技术。 我们将在 PyTorch 中实现它并训练分类器模型。