实验主要部分代码(附录有工程code下载链接):

#include"dialog.h"#include"ui_dialog.h"#include#includeDialog::Dialog(QWidget*parent) :

QDialog(parent),

ui(newUi::Dialog)

ui->setupUi(this);

Dialog::~Dialog()

delete ui;

}voidDialog::on_openButton_clicked()

QString img_mame= QFileDialog::getOpenFileName(this,"Open img","../people", tr("Image Files(*.png *.jpg *.bmp *.jpeg)"));

img=imread( img_mame.toAscii().data() );

imwrite("../hog_test.jpg", img);

ui->textBrowser->setFixedSize(img.cols, img.rows);

ui->textBrowser->append("");

}voidDialog::on_detectButton_clicked()

vectorfound, found_filtered;

cv::HOGDescriptor people_dectect_hog;//采用默认的已经训练好了的svm系数作为此次检测的模型people_dectect_hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector());//对输入的图片img进行多尺度行人检测//img为输入待检测的图片;found为检测到目标区域列表;参数3为程序内部计算为行人目标的阈值,也就是检测到的特征到SVM分类超平面的距离;//参数4为滑动窗口每次移动的距离。它必须是块移动的整数倍;参数5为图像扩充的大小;参数6为比例系数,即测试图片每次尺寸缩放增加的比例;//参数7为组阈值,即校正系数,当一个目标被多个窗口检测出来时,该参数此时就起了调节作用,为0时表示不起调节作用。people_dectect_hog.detectMultiScale(img, found,0, Size(8,8), Size(32,32),1.05,2);//从源码中可以看出://#define __SIZE_TYPE__ long unsigned int//typedef __SIZE_TYPE__ size_t;//因此,size_t是一个long unsigned int类型size_t i, j;for(i =0; i < found.size(); i++)

Rect r=found[i];//下面的这个for语句是找出所有没有嵌套的矩形框r,并放入found_filtered中,如果有嵌套的//话,则取外面最大的那个矩形框放入found_filtered中for(j =0; j

found_filtered.push_back(r);

}//在图片img上画出矩形框,因为hog检测出的矩形框比实际人体框要稍微大些,所以这里需要//做一些调整for(i =0; i

Rect r=found_filtered[i];

r.x+= cvRound(r.width*0.1);

r.width= cvRound(r.width*0.8);

r.y+= cvRound(r.height*0.07);

r.height= cvRound(r.height*0.8);

rectangle(img, r.tl(), r.br(), Scalar(0,255,0),3);

imwrite("../hog_test_result.jpg", img);

ui->textBrowser->clear();