import schedule
import time
import threading
def foo1():
time.sleep(2)
print(time.perf_counter() - start_time)
def foo2():
time.sleep(2)
print(time.perf_counter() - start_time)
def t1():
t = threading.Thread(target=foo1)
t.start()
def t2():
t = threading.Thread(target=foo2)
t.start()
schedule.every(5).seconds.do(t1)
schedule.every(5).seconds.do(t2)
start_time = time.perf_counter()
while 1:
schedule.run_pending()
7.006393073
7.006451532000001
12.007217038999999
12.012260847999999
17.00669922
17.012707463
22.008171498000003
22.008225246000002
可以看到这次变成每隔 5 秒执行了,而且两个任务之间也没有 2s 的间隔了。
apscheduler 模块用法
关于定时任务的实现,Python 自带的 threading.Timer 和 schedule 模块的功能局限性还是蛮强的,所以还有一个更强大第三方模块 apscheduler。
apscheduler 提供了基于日期、时间间隔、以及 crontab 类型的任务,我们可以在主程序的运行过程中快速增加新任务或者删除旧任务,如果把任务存储在数据库中,那么任务的状态会被保存。当调度器重启时,不必重新添加任务,保存起来的任务会恢复原状态继续执行。
apscheduler 有以下几个重要的组件:
触发器(triggers):触发器包含调度逻辑,描述一个任务何时被触发,按照日期、时间间隔、cron 表达式,三种方式触发。每个作业都有其自己的触发器,除了初始配置之外,触发器是完全无状态的。
任务存储器(job stores):任务存储器指定了作业被存放的位置,默认情况下任务保存在内存,也可以将任务保存在数据库中,当任务被保存在数据库中,它会被序列化;当被重新加载到内存中,会被反序列化。任务存储器充当保存、加载、更新和查找任务的中间商。在调度器之间不能共享任务存储。
执行器(executors):执行器是将指定的任务(调用函数)放到线程池或进程池当中去运行,当任务完成时,执行器通知调度器触发相应的事件。
调度器(schedulers):任务调度器,属于控制角色,通过它配置任务存储器、执行器和触发器,添加、修改和删除任务。调度器协调触发器、任务存储器、执行器的运行,通常只有一个调度程序运行在应用程序中,开发人员通常不需要直接处理任务存储器、执行器或者触发器,配置任务存储器和执行器都是通过调度器来完成的。
apscheduler 的每一个组件都有不同的选择:
BlockingScheduler 阻塞式调度器:适用于只跑调度器的程序。
BackgroundScheduler 后台调度器:适用于非阻塞的情况,调度器会在后台独立运行。
AsyncIOScheduler AsyncIO调度器:适用于应用使用AsnycIO的情况。
TornadoScheduler Tornado调度器:适用于构建Tornado应用。
TwistedScheduler Twisted调度器:适用于构建Twisted应用。
QtScheduler Qt调度器:适用于构建Qt应用。
任务存储器
然后是任务存储器:任务存储器的选择,要看任务是否需要持久化。如果任务是无状态的,那么选择默认存储器 MemoryJobStore 就可以应付。但是,如果需要程序关闭或者重启时,保持任务的状态,那么就要选择持久化的任务存储器。另外,作者推荐,使用 SQLAlchemyJobStore 并搭配 PostgreSQL 作为后台数据库。这个方案可以提供强大的数据整合与保护功能。
执行器的选择,同样看需求。默认的 ThreadPoolExecutor 线程池执行器方案可以满足大部分需求。如果,你的程序是计算密集型的,那么最好用 ProcessPoolExecutor 进程池执行器方案来充分利用多核算力。也可以将 ProcessPoolExecutor 作为第二执行器,混合使用两种不同的执行器。
任务触发器
配置一个任务,就要设置一个任务触发器。触发器可以设定任务运行的周期、次数和时间。APScheduler 有三种内置的触发器:
date 日期:触发任务运行的具体日期
interval 间隔:触发任务运行的时间间隔
cron 周期:触发任务运行的周期
一个任务也可以设定多种触发器,比如,可以设定同时满足所有触发器条件而触发,或者满足一项即触发。
配置触发器
下面我们来详细介绍一下触发器。
date:在指定时间点触发任务
当到达某个时间点的时候触发:
from datetime import date, datetime
from apscheduler.schedulers.blocking import BlockingScheduler
# 选择了阻塞式调度器,创建一个调度器的实例
scheduler = BlockingScheduler()
# 创建一个任务
def my_task(name, age, gender):
print(f"name is {name}, age is {age}, gender is {gender}")
# 通过调用调度实例下的 add_job 方法,将任务添加进去
常用参数:
func:任务(执行函数)
trigger:触发器,一共三种方式。
date 日期:触发任务运行的具体日期
interval 间隔:触发任务运行的时间间隔
cron 周期:触发任务运行的周期
run_date:运行日期,当我们指定trigger为'date'时,可以添加这么一个参数。类型可以是date、datetime、以及文本类型
args:任务的位置参数
kwargs:任务的关键字参数
scheduler.add_job(my_task, trigger="date",
run_date=date(2019, 6, 10),
args=("mashiro", 17),
kwargs={"gender": "女"})
scheduler.add_job(my_task,
trigger="date",
run_date=datetime(2019, 6, 9, 17, 14, 4),
args=("mashiro", 17),
kwargs={"gender": "女"})
scheduler.add_job(my_task,
trigger="date",
run_date="2019-6-9 17:14:05",
args=("mashiro", 17),
kwargs={"gender": "女"})
# 未指定日期,则会立即执行
scheduler.add_job(my_task,
args=("mashiro", 17),
kwargs={"gender": "女"})
# 启动调度器
scheduler.start()
name is mashiro, age is 17, gender is 女
name is mashiro, age is 17, gender is 女
name is mashiro, age is 17, gender is 女
还有一个没有打印,程序没有结束。等打印的时候,要等到明天,也就是 10 号了,今天是 9 号。
如果我把日期改一下呢?比如此刻是 2019-6-9,我改成 18 年执行:
Run time of job "my_task (trigger: date[2018-11-14 00:00:00 CST], next run at: 2018-11-14 00:00:00 CST)" was missed by 207 days, 17:18:14.146335
会提示如下,提前了这个任务比当前时间,少了 207 天,是在当前时间之前,是无法执行的。
interval:周期触发任务
显然此时是每个一段时间触发任务:
from apscheduler.schedulers.blocking import BlockingScheduler
scheduler = BlockingScheduler()
def my_task1():
print("好きなものを仕事にしたことは実に人生の一つ楽しいこと")
def my_task2():
print("把喜欢的东西变成工作实乃人生一大快事")
# 其他参数没什么变化,当我们把trigger指定成interval的时候,表示每隔xx时间执行一次。可以额外指定如下参数
weeks:每隔多少周后执行一次
days:每隔多少天后执行一次
hours:每隔多少小时后执行一次
minutes:每隔多少分钟后执行一次
seconds:每隔多少秒后执行一次
此外还可以指定 start_date 和 end_date,表示任务触发的起始时间和结束时间。
比如某个任务每隔一天执行一次,但是这个任务有截止日期,当超过了截止日期的时候,就不需要再执行它了。于是就可以将该"截止日期"设置为 end_date,如果超过了,那么任务会被取消掉
# 此时的时间已经超过了 2019-6-9 17:32:00,所以第二个任务是会被取消掉的。
scheduler.add_job(func=my_task1, trigger="interval", minutes=1)
scheduler.add_job(func=my_task2, trigger="interval", minutes=1, end_date="2019-6-9 17:43:00")
scheduler.start()
好きなものを仕事にしたことは実に人生の一つ楽しいこと
把喜欢的东西变成工作实乃人生一大快事
好きなものを仕事にしたことは実に人生の一つ楽しいこと
把喜欢的东西变成工作实乃人生一大快事
好きなものを仕事にしたことは実に人生の一つ楽しいこと
把喜欢的东西变成工作实乃人生一大快事
好きなものを仕事にしたことは実に人生の一つ楽しいこと
把喜欢的东西变成工作实乃人生一大快事
好きなものを仕事にしたことは実に人生の一つ楽しいこと
好きなものを仕事にしたことは実に人生の一つ楽しいこと
好きなものを仕事にしたことは実に人生の一つ楽しいこと
。。。。。。
。。。。。。
。。。。。。
另外还有一个 jitter 当所有任务全部都在一起执行的时候,可能造成服务器资源压力大,那么添加一个随机秒数,可以避免造成服务拥堵。参数,表示添加一个随机的浮动秒数。
from apscheduler.schedulers.blocking import BlockingScheduler
import time
scheduler = BlockingScheduler()
# 除了add_job的方式,我们还可以通过 scheduled_job 使用装饰器的方式
t1 = time.perf_counter()
@scheduler.scheduled_job(trigger="interval", seconds=10, jitter=1)
def my_task():
print("好きなものを仕事にしたことは実に人生の一つ楽しいこと", time.perf_counter() - t1)
scheduler.start()
好きなものを仕事にしたことは実に人生の一つ楽しいこと 10.900859013
好きなものを仕事にしたことは実に人生の一つ楽しいこと 19.972885888
好きなものを仕事にしたことは実に人生の一つ楽しいこと 30.506739256000003
。。。。。。
当把 trigger 指定为 cron 的时候,可以达到非常强大的效果,该表达式被定义为一个类 apscheduler.triggers.cron.CronTrigger。
class CronTrigger:
def __init__(self, year=None, month=None, day=None, week=None, day_of_week=None, hour=None,
minute=None, second=None, start_date=None, end_date=None, timezone=None,
jitter=None):
year:四位数的年份
month:1-12之间的数字或字符串,如果不指定,则为 *,表示每个月
day:1-31,如果不指定,则为 *,表示每一天
week:1-53,如果不指定,则为 *,表示每一星期
day_of_week:一周有 7 天,用 0-6 表示,比如指定 0-3,则表示周一到周四。
不指定则为7天,也可以用 mon,tue,wed,thu,fri,sat,sun 表示
hour:0-23
minute:0-59
second:0-59
start_date:起始时间
end_date:结束时间
timezone:时区
jitter:随机的浮动秒数
当省略时间参数时,在显式指定参数之前的参数会被设定为 *,表示每(月、天)xxx。
之后的参数会被设定为最小值,week 和 day_of_week 的最小值为*。
比如,设定 day=10 等同于设定 year='*', month='*', day=1, week='*', day_of_week='*', hour=0, minute=0, second=0,
即每个月的第 10 天触发。为什么是每个月而不是每个星期,注意参数位置,week被放在了后面。
day 后面的参数 hour、minute、second 则被设置为0。因此不仅是每个月的第 10 天触发,还是每个月的第 10 天的 00:00:00 的时候触发
表达式类型:
举几个栗子:
hour=19,minute=23 这里表示每个月的每一天在 19:23 的时候执行任务。因为显式指定的参数的前面的参数都被设置为 *,表示"每";此外也可以是 hour ='19', minute ='23',可以填字符串也可以填数字
month='6-9,11-12',day='4rd sun',hour='0-3' 表示将在第 6、7、8、9、11、12 个月的第四个星期日的00:00:00、01:00:00、02:00:00、03:00:00执行任务
day=15,hour=20,minute=14 表示每个月的第 15 天的 20:14 的时候执行任务
day='4rd sun' 表示将在每个月的第四个周日执行任务,而且是 00:00:00,因为后面的参数如果不指定的话,默认为最小值
day='last sun',hour=17,minute=25 表示每个月的最后一个星期日的 17:25 执行任务
day='last',hour=20 表示每个月的最后一天的 20:00 的时候执行任务
day_of_week='0-2' 表示每一周的周一、周二、周三执行任务
month='1-3',day_of_week='mon',hour='22',minute='14',second='48' 表示 1 月、2 月、3 月的每个星期 1 的 22:14:48 的时候执行任务
因此值得注意的是:day 既可以写数字表示每个月的第 xxx 天,也可以写 xth y 表示每个月的第 x 个星期 y、last x 表示最后一个星期 x、last 表示每个月的最后一天。而如果想表示每个月的每个星期几,则可以使用 day_of_week='0-6'(每周一到周日,或者写成mon-sun),day_of_week='0-4'(每周一到周五),day_of_week='0'(每周一)。一般情况:day 和 day_of_week 不建议同时使用。
还有一个时区问题,有些时区可能会有夏令时的问题。这个会导致令时切换时,任务不执行或任务执行两次。因此可以指定 timezone:
from apscheduler.schedulers.blocking import BlockingScheduler
import pytz
import datetime
timezone = pytz.timezone("Asia/Shanghai")
def my_task():
print("task executed")
print(datetime.datetime.now())
scheduler = BlockingScheduler()
# 第6个月的第9天的每小时第3分钟第30秒执行,同时指定时区
scheduler.add_job(my_task, trigger="cron", month=6, day=9, minute=3, second=30, timezone=timezone)
scheduler.start()
task executed
2019-06-09 19:03:30.001664
配置调度器
APScheduler 有多种不同的配置方法,可以选择直接传字典或传参的方式创建调度器;也可以先实例一个调度器对象,再添加配置信息。灵活的配置方式可以满足各种应用场景的需要。
整套的配置选项可以参考 API 文档 BaseScheduler 类。一些调度器子类可能有它们自己特有的配置选项,以及独立的任务储存器和执行器也可能有自己特有的配置选项,可以查阅 API 文档了解。
from apscheduler.schedulers.background import BackgroundScheduler
# 创建一个后台调度器实例,该实例是非阻塞的
scheduler = BackgroundScheduler()
该调度器下有一个名称为 default 的 MemoryJobStore(内存任务储存器)
以及一个名称是 default 且最大线程数是 10 的 ThreadPoolExecutor(线程池执行器)
但现在我需要自己指定任务存储器和执行器该怎么办呢?比如我要将任务存储器设置为 pgsql 和 redis,线程池设置为 20 个,同时搭配 5 个进程池。
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
import pytz
jobstores = {
"redis": RedisJobStore(hostname="localhost", port=6379),
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://localhost:5432@postgres:zgghyys123/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(20),
"process_pool": ProcessPoolExecutor(5)
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.utc)
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler({
"apscheduler.jobstores.redis": {
"type": "redis",
"hostname": "localhost",
"port": 6379
"apscheduler.jobstores.sqlalchemy_pgsql": {
"type": "sqlalchemy",
"url": "postgresql://localhost:5432@postgres:zgghyys123/postgres"
"apscheduler.executors.thread_pool": {
"type": "apscheduler.executors.pool:ThreadPoolExecutor",
"max_workers": 20
"apscheduler.executors.process_pool": {
"type": "apscheduler.executors.pool:ProcessPoolExecutor",
"max_workers": 5
"apscheduler.job_defaults.coalesce": "false",
"apscheduler.job_defaults.max_instances": "3",
"apscheduler.timezone": "UTC"
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.jobstores.redis import RedisJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
import pytz
jobstores = {
"redis": RedisJobStore(hostname="localhost", port=6379),
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://localhost:5432@postgres:zgghyys123/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(20),
"process_pool": ProcessPoolExecutor(5)
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler()
scheduler.configure(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.utc)
以上为自定义调度器的三种方法,推荐第一种或第三种,第二种太麻烦。
启动调度器
启动调度器只需要调用 start 方法即可,除了 BlockingScheduler,非阻塞调度器都会立即返回,可以继续运行之后的代码,比如添加任务等。
对于 BlockingScheduler,程序则会阻塞在 start() 位置,所以,要运行的代码必须写在 start() 之前。
注!调度器启动后,就不能修改配置了。
添加任务的方法有两种:
通过调用add_job方法,最常用
通过 scheduled_job 方法,最方便,但缺点就是运行时不能修改任务。第一种 add_job 方法会返回一个 apscheduler.job.Job 实例,这样就可以在运行时,修改或删除任务
在任何时候你都能配置任务,但是如果调度器还没有启动,此时添加任务,那么任务就处于一个暂存的状态。只有当调度器启动时,才会开始计算下次运行时间。
还有一点要注意,如果你的执行器或任务储存器是会序列化任务的,那么这些任务就必须符合:
回调函数必须全局可用
回调函数参数必须也是可以被序列化的
内置任务储存器中,只有 MemoryJobStore 不会序列化任务;内置执行器中,只有 ProcessPoolExecutor 会序列化任务。
重要提醒!如果在程序初始化时,是从数据库读取任务的,那么必须为每个任务定义一个明确的 ID,并且使用 replace_existing=True,否则每次重启程序,你都会得到一份新的任务拷贝,也就意味着任务的状态不会保存。
建议!如果想要立刻运行任务,可以在添加任务时省略 trigger 参数。
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1_executed", f"now is {datetime.datetime.now()}")
def my_task2():
print("task2_executed", f"now is {datetime.datetime.now()}")
def my_task3():
print("task3_executed", f"now is {datetime.datetime.now()}")
scheduler.add_job(my_task1, trigger="cron", second=10, id="my_task1")
scheduler.add_job(my_task2, trigger="cron", second=10, id="my_task2")
scheduler.add_job(my_task3, trigger="cron", second=10, id="my_task3")
scheduler.start()
while 1:
task1_executed now is 2019-06-09 21:49:10.075890
task2_executed now is 2019-06-09 21:49:10.087858
task3_executed now is 2019-06-09 21:49:10.105834
task1_executed now is 2019-06-09 21:50:10.110394
task2_executed now is 2019-06-09 21:50:10.127318
task3_executed now is 2019-06-09 21:50:10.138316
task1_executed now is 2019-06-09 21:51:10.103801
task2_executed now is 2019-06-09 21:51:10.103801
task3_executed now is 2019-06-09 21:51:10.149701
。。。。。。。
此时数据库里面多了一张表,名叫apscheduler_jobs。保存了执行的状态,当我们重启启动程序的时候,会进行读取。但是呢?每一次读取都是重新读取,也就是说状态不会被保存,如果想从数据库读取任务,从上一次中断的状态继续执行的话,那么必须要为任务制定 id,同时设置 replace_existing=True。
如果想从调度器移除一个任务,那么你就要从相应的任务储存器中移除它,这样才算移除了。有两种方式:
调用 remove_job(),参数为:任务ID,任务储存器名称
在通过 add_job() 创建的任务实例上调用 remove() 方法
第二种方式更方便,但前提必须在创建任务实例时,实例被保存在变量中。对于通过 scheduled_job() 创建的任务,只能选择第一种方式。当任务调度结束时(比如,某个任务的触发器不再产生下次运行的时间),任务就会自动移除。
job = scheduler.add_job(myfunc, 'interval', minutes=2)
job.remove()
同样,通过任务的具体 ID:
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.remove_job('my_job_id')
暂停和恢复任务
通过任务实例或调度器,就能暂停和恢复任务。如果一个任务被暂停了,那么该任务的下一次运行时间就会被移除。在恢复任务前,运行次数计数也不会被统计。暂停任务,有以下两个方法:
apscheduler.job.Job.pause()
apscheduler.schedulers.base.BaseScheduler.pause_job()
恢复任务也有两个方法:
apscheduler.job.Job.resume()
apscheduler.schedulers.base.BaseScheduler.resume_job()
获取任务列表
通过 get_jobs() 就可以获得一个可修改的任务列表,get_jobs() 第二个参数可以指定任务储存器名称,那么就会获得对应任务储存器的任务列表。
print_jobs() 可以快速打印格式化的任务列表,包含触发器,下次运行时间等信息。
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
import time
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1_prepared")
time.sleep(5)
print(f"task1_executed")
def my_task2():
print("task2_prepared")
time.sleep(5)
print(f"task2_executed")
def my_task3():
print("task3_prepared")
time.sleep(5)
print(f"task3_executed")
scheduler.add_job(my_task1, trigger="interval", seconds=3, id="my_task1")
scheduler.add_job(my_task2, trigger="interval", seconds=3, id="my_task2")
scheduler.add_job(my_task3, trigger="interval", seconds=3, id="my_task3")
scheduler.start()
print(scheduler.get_jobs())
scheduler.print_jobs()
[<Job (id=my_task1 name=my_task1)>, <Job (id=my_task2 name=my_task2)>, <Job (id=my_task3 name=my_task3)>]
Jobstore default:
my_task1 (trigger: interval[0:00:03], next run at: 2019-06-09 22:35:23 CST)
my_task2 (trigger: interval[0:00:03], next run at: 2019-06-09 22:35:23 CST)
my_task3 (trigger: interval[0:00:03], next run at: 2019-06-09 22:35:23 CST)
Jobstore sqlalchemy_pgsql:
No scheduled jobs
通过 apscheduler.job.Job.modify() 或 modify_job(),你可以修改任务当中除了 id 的任何属性。
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
import time
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1_prepared")
time.sleep(5)
print(f"task1_executed")
def my_task2():
print("task2_prepared")
time.sleep(5)
print(f"task2_executed")
def my_task3():
print("task3_prepared")
time.sleep(5)
print(f"task3_executed")
job1 = scheduler.add_job(my_task1, trigger="interval", seconds=10, id="my_task1")
job2 = scheduler.add_job(my_task2, trigger="interval", seconds=10, id="my_task2")
job3 = scheduler.add_job(my_task3, trigger="interval", seconds=10, id="my_task3")
scheduler.start()
# 改变name
job3.modify(name="satori")
print(scheduler.get_jobs())
while 1:
[<Job (id=my_task1 name=my_task1)>, <Job (id=my_task2 name=my_task2)>, <Job (id=my_task3 name=satori)>]
可以看到 job 的 name 被修改了,如果想要重新调度任务(就是改变触发器),你能通过 apscheduler.job.Job.reschedule() 或 reschedule_job() 来实现。这些方法会重新创建触发器,并重新计算下次运行时间。
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
import time
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1_prepared")
time.sleep(5)
print(f"task1_executed")
def my_task2():
print("task2_prepared")
time.sleep(5)
print(f"task2_executed")
def my_task3():
print("task3_prepared")
time.sleep(5)
print(f"task3_executed")
job1 = scheduler.add_job(my_task1, trigger="interval", seconds=10, id="my_task1")
job2 = scheduler.add_job(my_task2, trigger="interval", seconds=10, id="my_task2")
job3 = scheduler.add_job(my_task3, trigger="interval", seconds=10, id="my_task3")
scheduler.start()
# 通过id,改变trigger,改成6s后执行
scheduler.reschedule_job(job_id="my_task2", trigger="interval", seconds=6)
while 1:
task2_prepared
task1_prepared
task3_prepared
task2_executed
task2_prepared
task1_executed
task3_executed
.......
为什么会出现这个结果呢?首先 task2 在 6s 后就执行了,因此会先打印, task2_prepared。但是要 sleep 5s,而 task1 和 task3 在10s后执行,所以只差了 4s。因此在先打印完 task1_prepared 和 task3_prepared 之后,过 1s 打印 task2_executed,此时 task1 和 task3 还差 4s 才能 sleep 结束。但是由于调度器修改,改成了 3s,所以会再次先打印 task2_prepared,然后又过了 1s,才打印 task1_executed 和 task3_executed。
关闭调度器
关闭调度器可以使用 scheduler.shutdown(),默认情况下,调度器会先把正在执行的任务处理完,再关闭任务储存器和执行器。但是,如果你就直接关闭,你可以添加参数:wait=False,这样的话不管有没有任务在执行,会强制关闭调度器。
暂停、恢复任务进程
调度器可以暂停正在执行的任务:scheduler.pause()
调度器可以恢复已经暂停的任务:scheduler.resume()
同时,也可以在调度器启动时,默认所有任务设为暂停状态:scheduler.start(paused=True)
然后是作业相关操作:
scheduler.remove_job(job_id,jobstore=None) # 删除作业
scheduler.remove_all_jobs(jobstore=None) # 删除所有作业
scheduler.pause_job(job_id,jobstore=None) # 暂停作业
scheduler.resume_job(job_id,jobstore=None) # 恢复作业
scheduler.modify_job(job_id, jobstore=None, **changes) # 修改单个作业属性信息
scheduler.reschedule_job(job_id, jobstore=None, trigger=None,**trigger_args) # 修改单个作业的触发器并更新下次运行时间
scheduler.print_jobs(jobstore=None, out=sys.stdout) # 输出作业信息
限制任务执行的并行实例数
默认情况下,在同一时间,一个任务只允许一个执行中的实例在运行。比如说,一个任务是每 5 秒执行一次,但是这个任务在第一次执行的时候花了 6 秒,也就是说前一次任务还没执行完,后一次任务又触发了,由于默认一次只允许一个实例执行,所以第二次就丢失了。为了杜绝这种情况,可以在添加任务时,设置 max_instances 参数,为指定任务设置最大实例并行数。
丢失任务的执行与合并
有时,任务会由于一些问题没有被执行。最常见的情况就是,在数据库里的任务到了该执行的时间,但调度器被关闭了,那么这个任务就成了"哑弹任务"。错过执行时间后,调度器才打开。这时,调度器会检查每个任务的 misfire_grace_time 参数值(整型),即哑弹上限,来确定是否还执行哑弹任务(这个参数可以全局设定的或者是为每个任务单独设定)。此时,一个哑弹任务,就可能会被连续执行多次。
但这就可能导致一个问题,有些哑弹任务实际上并不需要被执行多次。 coalescing 合并参数就能把一个多次的哑弹任务揉成一个一次的哑弹任务。也就是说,coalescing 为 True 能把多个排队执行的同一个哑弹任务,变成一个,而不会触发哑弹事件。
注!如果是由于线程池/进程池满了导致的任务延迟,执行器就会跳过执行。要避免这个问题,可以添加进程或线程数来实现或把 misfire_grace_time 值调高。
假如一个作业本来 08:00 有一次执行,但是由于某种原因没有被调度上,现在 08:01 了,这个 08:00 的运行实例被提交时,会检查它预订运行的时间和当下时间的差值(这里是1分钟),大于我们设置的限制(假设 30s),那么这个运行实例不会被执行。最常见的情形是 scheduler 被 shutdown 后重启,某个任务会积攒了好几次没执行,如 5 次,下次这个作业被提交给执行器时,执行 5 次。设置 coalesce=True 后,只会执行一次。
调度器事件
调度器允许添加事件侦听器。部分事件会有特有的信息,比如当前运行次数等。add_listener(callback,mask)
中,第一个参数是回调对象,mask 是指定侦听事件类型,mask 参数也可以是逻辑组合。回调对象会有一个参数就是触发的事件。
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1 executed")
def my_task2():
raise IndexError
print("task2_executed")
def my_task3():
print("task3_executed")
def listener(event):
if event.exception:
print(f"{event.job_id}出错了")
else:
print(f"正常执行")
job1 = scheduler.add_job(my_task1, trigger="interval", seconds=3, id="my_task1")
job2 = scheduler.add_job(my_task2, trigger="interval", seconds=3, id="my_task2")
job3 = scheduler.add_job(my_task3, trigger="interval", seconds=3, id="my_task3")
scheduler.add_listener(listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
scheduler.start()
while 1:
task1 executed
task3_executed
Job "my_task2 (trigger: interval[0:00:03], next run at: 2019-06-09 23:12:42 CST)" raised an exception
Traceback (most recent call last):
File "C:\python37\lib\site-packages\apscheduler\executors\base.py", line 125, in run_job
retval = job.func(*job.args, **job.kwargs)
File "D:/mashiro/9.py", line 33, in my_task2
raise IndexError
IndexError
my_task2出错了
task1 executed
task3_executed
Job "my_task2 (trigger: interval[0:00:03], next run at: 2019-06-09 23:12:45 CST)" raised an exception
Traceback (most recent call last):
File "C:\python37\lib\site-packages\apscheduler\executors\base.py", line 125, in run_job
retval = job.func(*job.args, **job.kwargs)
File "D:/mashiro/9.py", line 33, in my_task2
raise IndexError
IndexError
可以看到即使报错了,也会打印 "my_task2出错了",但是这样不美观,我们可以指定日志。
我们看到一旦出现异常就比较丑陋,那么如何进行异常捕获呢?
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor
import pytz
from apscheduler.events import EVENT_JOB_EXECUTED, EVENT_JOB_ERROR
import logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
filename='log1.txt',
filemode='a')
jobstores = {
"sqlalchemy_pgsql": SQLAlchemyJobStore(url="postgresql://postgres:zgghyys123@localhost:5432/postgres")
executors = {
"thread_pool": ThreadPoolExecutor(3),
job_defaults = {
"coalesce": False, # 默认为新任务关闭合并模式
"max_instances": 3, # 设置新任务的最大实例数为3
scheduler = BackgroundScheduler(jobstores=jobstores,
executors=executors,
job_defaults=job_defaults,
timezone=pytz.timezone("Asia/Shanghai"))
def my_task1():
print("task1 executed")
def my_task2():
raise IndexError
print("task2_executed")
def my_task3():
print("task3_executed")
def listener(event):
if event.exception:
print(f"{event.job_id}出错了")
else:
print(f"正常执行")
job1 = scheduler.add_job(my_task1, trigger="interval", seconds=3, id="my_task1")
job2 = scheduler.add_job(my_task2, trigger="interval", seconds=3, id="my_task2")
job3 = scheduler.add_job(my_task3, trigger="interval", seconds=3, id="my_task3")
scheduler.add_listener(listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
scheduler._logger = logging
scheduler.start()
while 1:
task1 executed
task3_executed
my_task2出错了
task1 executed
task3_executed
my_task2出错了
task1 executed
my_task2出错了
task3_executed
task1 executed
task3_executed
my_task2出错了
这样就能捕获异常消息了,而且在做成服务的时候。如果出错了,也可以以邮件的方式通知客户。