2、机器学习与生物信息学

个人 简介

张永清,博士、教授、研究生导师,入选四川省“天府青城计划”青年人才。博士毕业于四川大学,美国加州大学圣地亚哥分校博士联合培养。研究兴趣包括人工智能、机器学习、数据挖掘、生物信息学等。在国内外顶级期刊和会议NAR、BIB、JBHI、ESWA、自动化学报、AAAI、BIBM等发表50余篇研究论文,申请发明专利10余项。主持包括国家自然科学基金面上项目、青年项目、四川省科技计划项目等10余项国家省部级科研项目。担任计算机科学、TCBB、BIB、ESWA、BMC Genomics等国内国际期刊审稿人。现为中国计算机学会生物信息学、计算机应用、数据库专委会执行委员、CCF YOCSEF成都副主席(2019-2021)、中国自动化学会智能健康与生物信息专委会委员、中国人工智能学会生物信息学与人工生命专委会委员、中国生物工程学会计算生物学与生物信息学专委会委员。四川省一流本科课程《计算机组成原理》负责人,获第五届成都信息工程大学“优秀教师”奖、第八届成都信息工程大学“青年教师教学奖”、第二届教师教学创新大赛副高组二等奖、成都信息工程大学教育教学成果奖二等奖等,指导学生获得国家省级大学生创新创业训练计划项目和省科技创新苗子工程资助项目10余项。

承担 科研项目:

1.国家自然科学基金面上项目,面向TFBS与非编码变异关联的深度学习体系结构研究(62272067),课题负责人

2.国家自然科学基金青年科学基金项目,高通量数据和深度学习在基因调控层次网络构建中的应用研究(61702058),课题负责人。

3.中国博士后科学基金面上基金,基于膜电压驱动的Spiking神经网络学习算法研究(2017M612948),课题负责人。

4.成都信息工程大学中青年学术带头人科研基金,基于智能计算的基因网络研究(J201706),课题负责人。

5.军委科技委创新特区子课题项目,情绪反馈调节系统(2018Z007),主研。

6.军委科技委创新特区子课题项目,脑波音乐实时生成系统(2018Z130),主研。

目前授课:

“计算机组成原理”,本科生

“人工智能”,本科/研究生

近5年代表性论文(*为通讯作者):

1. Y ongqing Zhang , Wenpeng Cao, Lixiao Feng, Manqing Wang, Tianyu Geng, Jiliu Zhou, Dongrui Gao*, SHNN: A single-channel EEG sleep staging model based on semi-supervised learning, Expert Systems with Applications, Volume 213, Part C, 2022, 119288. (中科院一区)

2. Y ongqing Zhang , Siyu Chen, Wenpeng Cao, Peng Guo, Dongrui Gao, Manqing Wang, Jiliu Zhou, Ting Wang*, MFFNet: Multi-dimensional Feature Fusion Network based on attention mechanism for sEMG analysis to detect muscle fatigue, Expert Systems with Applications, Volume 185, 2021, 115639. (中科院一区)

3. Y ongqing Zhang , Shaojie Qiao*, Yuanqi Zeng, Dongrui Gao, Nan Han, Jiliu Zhou, CAE-CNN: Predicting transcription factor binding site with convolutional autoencoder and convolutional neural network, Expert Systems with Applications, Volume 183,2021,115404.(中科院一区)

4. Yuhang Liu, Zixuan Wang, Hao Yuan, Guiquan Zhu, Y ongqing Zhang *, HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction, Briefings in Bioinformatics, Volume 24, Issue 5, 2023, bbad286. (中科院二区)

5. Y ongqing Zhang , Zixuan Wang, Yuanqi Zeng, Yuhang Liu, Shuwen Xiong, Maocheng Wang, Jiliu Zhou, Quan Zou*, A novel convolution attention model for predicting transcription factor binding sites by combination of sequence and shape, Briefings in Bioinformatics, Volume 23, Issue 1, 2022, bbab525. (中科院二区)

6. Y ongqing Zhang , Qingyuan Chen, Meiqin Gong, Yuanqi Zeng, Dongrui Gao*, Gene regulatory networks analysis of muscle-invasive bladder cancer subtypes using differential graphical model. BMC Genomics 22, 863 (2021). (中科院二区)

7. Y ongqing Zhang , Zixuan Wang, Yuanqi Zeng, Jiliu Zhou, Quan Zou*, High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method, Briefings in Bioinformatics, Volume 22, Issue 6, 2021, bbab273 (中科院二区)

8. Zixuan Wang, Shuwen Xiong, Yun Yu, Jiliu Zhou, Y ongqing Zhang *, HAMPLE: deciphering TF-DNA binding mechanism in different cellular environments by characterizing higher-order nucleotide dependency, Bioinformatics, Volume 39, Issue 5, btad299. (中科院三区)

9. Yuhang Liu, Hao Yuan, Qiang Zhang, Zixuan Wang, Shuwen Xiong, Naifeng Wen, Y ongqing Zhang *, Multiple sequence alignment based on deep reinforcement learning with self-attention and positional encoding, Bioinformatics, Volume 39, Issue 11, btad636. (中科院三区)

10. Y ongqing Zhang , Zixuan Wang, Yuhang Liu, and Quan Zou*, By hybrid neural networks for prediction and interpretation of transcription factor binding sites based on multi-omics, 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021, pp. 594-599. (CCF B类会议)

11. Y ongqing Zhang , Qingyuan Chen, Dongrui Gao, and Quan Zou*, GRRFNet: Guided Regularized Random Forest-based Gene Regulatory Network Inference Using Data Integration, IEEE BIBM 2020, 132-139.(CCF B类会议)

12. Y ongqing Zhang , Yanjian Rong, Siyu Chen, Meiqin Gong, Dongrui Gao, Min Zhu*, Wei Gan, A Review on the Application of Deep Learning in Bioinformatics, Current Bioinformatics, 2020:15 (8), 898-911.(中科院四区)

13. Y ongqing Zhang ; Cao, Xiaoyi; Zhong, Sheng*, “GeNemo: a search engine for web-based functional genomic data”, Nucleic Acids Research, 20 April, 2016,44,W122-127.(中科院一区)

上一条:
李孝杰 下一条: 唐寅

关闭