代码实现图像光照增强

时间: 2023-08-20 18:05:56 浏览: 108
图像光照增强是一种常见的图像处理技术,可以提高图像的亮度和对比度,使图像更加清晰、鲜明。下面是一份 Python [代码](https://geek.csdn.net/educolumn/1572ef9b473b4e00f6b2bf6d428b7c27?spm=1055.2569.3001.10083)实现图像光照增强的示例: ```python import cv2 import numpy as np def adjust_gamma([image](https://geek.csdn.net/educolumn/1defff92b42756fda40b623df99f03da?spm=1055.2569.3001.10083), gamma=1.0): # 将输入图像的像素值进行伽马变换,增强图像的亮度和对比度 invGamma = 1.0 / gamma table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).[ast](https://geek.csdn.net/educolumn/1d2c256574d93ae646d4473629b198e6?spm=1055.2569.3001.10083)ype("uint8") return cv2.LUT([image](https://geek.csdn.net/educolumn/1defff92b42756fda40b623df99f03da?spm=1055.2569.3001.10083), table) def histeq(image): # 对输入图像进行直方图均衡化,增强图像的对比度 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) equ = cv2.equalizeHist(gray) return cv2.merge((equ,equ,equ)) def en[han](https://geek.csdn.net/educolumn/0d22b54eaf6bcf967d9625e1679d00b4?spm=1055.2569.3001.10083)ce_image(image, gamma=1.0): # 将输入图像进行光照增强 image = adjust_gamma(image, gamma=gamma) image = histeq(image) return image # 加载图像 image = cv2.im ```

相关推荐

最新推荐

recommend-type

基于Python的图像数据增强Data Augmentation解析

本篇文章将深入探讨如何使用Python实现图像数据增强,主要关注翻转、旋转和缩放等基本操作。 1. **数据增强的重要性** 深度神经网络通常需要大量标注数据才能训练出高质量的模型。然而,收集大量带有标签的图像...
recommend-type

Visual C++实现数字图像增强处理

在图像处理领域,Visual C++ 可以用来实现多种功能,包括数字图像增强处理。图像增强是图像预处理的关键步骤,旨在改善图像质量,使其更利于后续的特征抽取和识别分析。本文主要讨论图像增强中的点运算技术及其在...
recommend-type

**python代码实现目标检测数据增强**

在Python中实现这些变换通常使用OpenCV库,如代码中的`cv2.imread`用于读取图像,`cv2.imshow`用于显示图像。需要注意的是,文件路径的设置要根据你的实际项目结构进行调整。此外,如果在运行时遇到问题,记得检查...
recommend-type

c#代码 各种图像处理方法

本文将深入探讨如何使用C#实现各种图像处理技术,如底片效果、柔化效果、锐化效果以及光照效果等。我们将围绕一个名为`ImageHandler`的类来展开讨论,该类封装了图像处理的主要操作。 首先,`ImageHandler`类应包含...
recommend-type

实验七 彩色图像处理

实验的目的是为了让学生深入理解色彩模型,掌握图像处理的基本方法,并在MATLAB环境中实现这些技术。 1. **色彩空间**: - **RGB模型**:RGB模型是基于红(Red)、绿(Green)、蓝(Blue)三原色的加性色彩模型,自然界...
recommend-type

移动边缘计算在车辆到一切通信中的应用研究

"这篇论文深入研究了移动边缘计算(MEC)在车辆到一切(V2X)通信中的应用。随着车辆联网的日益普及,V2X应用对于提高道路安全的需求日益增长,尤其是那些需要低延迟和高可靠性的应用。然而,传统的基于IEEE 802.11p标准的技术在处理大量连接车辆时面临挑战,而4G LTE网络虽然广泛应用,但因其消息传输需经过核心网络,导致端到端延迟较高。论文中,作者提出MEC作为解决方案,它通过在网络边缘提供计算、存储和网络资源,显著降低了延迟并提高了效率。通过仿真分析了不同V2X应用场景下,使用LTE与MEC的性能对比,结果显示MEC在关键数据传输等方面具有显著优势。" 在车辆到一切(V2X)通信的背景下,移动边缘计算(MEC)扮演了至关重要的角色。V2X涵盖了车辆与车辆(V2V)、车辆与基础设施(V2I)、车辆与行人(V2P)以及车辆与网络(V2N)等多种交互方式,这些交互需要快速响应和高效的数据交换,以确保交通安全和优化交通流量。传统的无线通信技术,如IEEE 802.11p,由于其技术限制,在大规模联网车辆环境下无法满足这些需求。 4G LTE网络是目前最常用的移动通信标准,尽管提供了较高的数据速率,但其架构决定了数据传输必须经过网络核心,从而引入了较高的延迟。这对于实时性要求极高的V2X应用,如紧急制动预警、碰撞避免等,是不可接受的。MEC的出现解决了这个问题。MEC将计算能力下沉到网络边缘,接近用户终端,减少了数据传输路径,极大地降低了延迟,同时提高了服务质量(QoS)和用户体验质量(QoE)。 论文中,研究人员通过建立仿真模型,对比了在LTE网络和MEC支持下的各种V2X应用场景,例如交通信号协调、危险区域警告等。这些仿真结果验证了MEC在降低延迟、增强可靠性方面的优越性,特别是在传输关键安全信息时,MEC能够提供更快的响应时间和更高的数据传输效率。 此外,MEC还有助于减轻核心网络的负担,因为它可以处理一部分本地化的计算任务,减少对中央服务器的依赖。这不仅优化了网络资源的使用,还为未来的5G网络和车联网的发展奠定了基础。5G网络的超低延迟和高带宽特性将进一步提升MEC在V2X通信中的效能,推动智能交通系统的建设。 这篇研究论文强调了MEC在V2X通信中的重要性,展示了其如何通过降低延迟和提高可靠性来改善道路安全,并为未来的研究和实践提供了有价值的参考。随着汽车行业的智能化发展,MEC技术将成为不可或缺的一部分,为实现更高效、更安全的交通环境做出贡献。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

神经网络在语音识别中的应用:从声波到文字的5个突破

![神经网络在语音识别中的应用:从声波到文字的5个突破](https://img-blog.csdnimg.cn/6c9028c389394218ac745cd0a05e959d.png) # 1. 语音识别的基本原理** 语音识别是一项将人类语音转化为文本的过程,其基本原理是将声波信号转换为数字信号,并通过机器学习算法识别语音中的模式和特征。 语音信号由一系列声波组成,这些声波具有不同的频率和振幅。语音识别系统首先将这些声波数字化,然后提取特征,如梅尔频率倒谱系数 (MFCC) 和线性预测编码 (LPC)。这些特征可以描述语音信号的声学特性,如音高、响度和共振峰。 提取特征后,语音识别
recommend-type

mysql 010338

MySQL错误码010338通常表示“Can't find file: 'filename' (errno: 2)”。这个错误通常是数据库服务器在尝试打开一个文件,比如数据文件、日志文件或者是系统配置文件,但是因为路径错误、权限不足或其他原因找不到指定的文件。"filename"部分会替换为实际出错的文件名,而"errno: 2"是指系统级别的错误号,这里的2通常对应于ENOENT(No such file or directory),也就是找不到文件。 解决这个问题的步骤一般包括: 1. 检查文件路径是否正确无误,确保MySQL服务有权限访问该文件。 2. 确认文件是否存在,如果文件丢失
recommend-type

GIS分析与Carengione绿洲地图创作:技术贡献与绿色项目进展

本文主要探讨了在GIS分析与地图创建领域的实践应用,聚焦于意大利伦巴第地区Peschiera Borromeo的一个名为Carengione Oasis的绿色区域。作者Barbara Marana来自意大利博尔戈莫大学工程与应用科学系,她的研究团队致力于为当地政府提交的一个项目提供技术及地理参照支持。 项目的核心目标是提升并利用Carengione Oasis这一生态空间,通过GIS(地理信息系统)技术对其进行深度分析和规划。研究过程首先进行了一次GIS预分析,通过全面了解研究区域内的各种地理对象和特征,为后续工作奠定了基础。在这个阶段,团队采用了手持GPS导航器进行数据采集,这种方法的优点在于操作简便,能够迅速完成调查,但数据精度相对较低,仅为3至5米,这可能会影响到最终地图的精确度。 所采集的数据被导入到Esri的ArcMap 10.4.1版本中进行处理,这个选择表明了团队对主流GIS软件的信任和应用能力。此外,为了弥补GPS数据不足,他们还利用免费航空摄影图像对难以到达或不便于测量的区域进行了补充编辑,增强了地图的细节和完整性。 研究结果包括一系列专题图、公制地图以及地理参考图,甚至实现了3D虚拟漫游,使读者能够近乎真实地体验该地区。然而,由于数据精度不高,这些成果并未直接用于更新伦巴第官方地图(DBTR),仅部分数据被捐赠给了OpenStreetMap这样的开放数据平台,以供其他研究者和公众使用。 尽管如此,这项工作被视为未来进行更高精度调查的起点,未来有望提高地图的准确性,并将其成果纳入官方地图系统。此外,计划创建一个故事地图,以便更生动地呈现研究团队在Carengione Oasis项目中的探索和发现过程,增强地图背后的故事性和可理解性。