在传统的牙科治疗过程中,固定修复或可拆卸假牙是在石膏制成的模型上,并浸入硅胶或不可逆的氢胶材料。由于间接制造的假肢是在口腔中交付的,因此已经做了大量的研究来克服一系列此类制造工艺1、2的错误。
最近,一种数字方法被用来通过CAD过程来制造假肢,在获取3D图像后,在虚拟空间中操作模型,而不是给人留下印象3。
在早期,这种光学印模方法在有限的范围内使用,例如对一颗或少量牙齿进行牙科治疗。然而,随着3D扫描仪基础技术的开发,整个拱门的数字印象现在被用于制造大规模固定修复,可拆卸的修复,如部分或全假牙,正畸器具,和植入手术指南4,5,6,7。
在短区域(如单边拱门)中,数字印象的准确性令人满意。然而,由于口腔内扫描仪是一种手持式设备,通过将通过狭窄的光学窗口获得的图像拼接在一起来完成整个凹痕,因此在完成 U 形牙科拱后可以看到模型的失真。因此,在这个型号上制成的大范围设备可能不适合病人的口腔,需要很大的调整。
已经报道了各种关于使用口腔内扫描仪获得的虚拟印象体精度的研究,并且有各种研究模型和测量方法。根据研究课题,可分为临床研究8、9、10、11、12、12、体外
研究13、14
,15,16在模型单独生产研究。
临床研究的优点是能够评估实际临床环境的条件,但很难控制变量并无限期地增加临床病例数。临床研究的数量并不大,因为能够评估所需的变量是有限度的。另一方面,许多通过控制变量来评估口腔内扫描仪基本性能的体外研究已经
报告17。
研究模型还包括部分或完整的自然牙齿拱18,19,20,21,22和一个完全凹陷的下颚与所有牙齿
失去23
,或牙种植体在一定间隔24、25、26、27处安装并间隔的情况,或大部分牙齿保留且仅部分牙齿的形态。
牙齿失踪16,28。
然而,手持式口腔内扫描仪对虚拟印象体变形的研究仅限于通过将虚拟印象体与参考数据叠加并表示为一个数字而创建的颜色映射对偏差进行定性评估。每个数据的值。很难准确测量完整拱形的 3D 失真,因为大多数研究只检查具有非定向距离偏差的牙科拱门的局部部分。
本研究使用带有坐标系的标准模型,研究了口腔内扫描仪在光学印象过程中牙拱的变形。本研究的目的是提供一种评估口腔内扫描仪精度性能的方法,该扫描仪通过光学硬件和处理软件的差异表现出各种特性。
McLean, J. W., von Fraunhofer, J. A.
The estimation of cement film thickness by an in vivo technique.
British Dental Journal
.
131
(3), 107-111 (1971).
Park, J. M., Hong, Y. S., Park, E. J., Heo, S. J., Oh, N.
Clinical evaluations of cast gold alloy, machinable zirconia, and semiprecious alloy crowns: A multicenter study.
Journal of Prosthetic Dentistry
.
115
(6), 684-691 (2016).
Keul, C., et al.
Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization–a laboratory study.
Dental Materials
.
30
(4), 400-407 (2014).
Ritter, L., et al.
Accuracy of chairside-milled CAD/CAM drill guides for dental implants.
International Journal of Computerized Dentistry
.
17
(2), 115-124 (2014).
Grunheid, T., McCarthy, S. D., Larson, B. E.
Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance.
American Journal of Orthodontics and Dentofacial Orthopedics
.
146
(5), 673-682 (2014).
Penarrocha-Oltra, D., Agustin-Panadero, R., Bagan, L., Gimenez, B., Penarrocha, M.
Impression of multiple implants using photogrammetry: description of technique and case presentation.
Medicina Oral, Patolodia Oral y Cirugia Bucal
.
19
(4), e366-e371 (2014).
Kattadiyil, M. T., Mursic, Z., AlRumaih, H., Goodacre, C. J.
Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication.
Journal of Prosthetic Dentistry
.
112
(3), 444-448 (2014).
Kim, J., et al.
Comparison of experience curves between two 3-dimensional intraoral scanners.
Journal of Prosthetic Dentistry
.
116
(2), 221-230 (2016).
Lim, J. H., Park, J. M., Kim, M., Heo, S. J., Myung, J. Y.
Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience.
Journal of Prosthetic Dentistry
.
119
(2), 225-232 (2018).
Muhlemann, S., Greter, E. A., Park, J. M., Hammerle, C. H. F., Thoma, D. S.
Precision of digital implant models compared to conventional implant models for posterior single implant crowns: A within-subject comparison.
Clinical Oral Implants Research
.
29
(9), 931-936 (2018).
Park, J. M., Hammerle, C. H. F., Benic, G. I.
Digital technique for in vivo assessment of internal and marginal fit of fixed dental prostheses.
Journal of Prosthetic Dentistry
.
118
(4), 452-454 (2017).
Ender, A., Zimmermann, M., Attin, T., Mehl, A.
In vivo precision of conventional and digital methods for obtaining quadrant dental impressions.
Clinical Oral Investigations
.
20
(7), 1495-1504 (2016).
Kim, R. J., Park, J. M., Shim, J. S.
Accuracy of 9 intraoral scanners for complete-arch image acquisition: A qualitative and quantitative evaluation.
Journal of Prosthetic Dentistry
.
120
(6), 895-903 (2018).
Ender, A., Mehl, A.
Accuracy in dental medicine, a new way to measure trueness and precision.
Journal of Visualized Experiments
. (86), e51374 (2014).
Ender, A., Mehl, A.
In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions.
Quintessence International
.
46
(1), 9-17 (2015).
Ajioka, H., Kihara, H., Odaira, C., Kobayashi, T., Kondo, H.
Examination of the Position Accuracy of Implant Abutments Reproduced by Intra-Oral Optical Impression.
PLOS ONE
.
11
(10), e0164048 (2016).
Patzelt, S. B., Lamprinos, C., Stampf, S., Att, W.
The time efficiency of intraoral scanners: an in vitro comparative study.
Journal of Americal Dental Association
.
145
(6), 542-551 (2014).
Gan, N., Xiong, Y., Jiao, T.
Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues.
PLOS ONE
.
11
(7), e0158800 (2016).
Rehmann, P., Sichwardt, V., Wostmann, B.
Intraoral Scanning Systems: Need for Maintenance.
International Journal of Prosthodontics
.
30
(1), 27-29 (2017).
Patzelt, S. B., Emmanouilidi, A., Stampf, S., Strub, J. R., Att, W.
Accuracy of full-arch scans using intraoral scanners.
Clinical Oral Investigations
.
18
(6), 1687-1694 (2014).
Muallah, J., et al.
Accuracy of full-arch scans using intraoral and extraoral scanners: an in vitro study using a new method of evaluation.
International Journal of Computerized Dentistry
.
20
(2), 151-164 (2017).
Treesh, J. C., et al.
Complete-arch accuracy of intraoral scanners.
Journal of Prosthetic Dentistry
.
120
(3), 382-388 (2018).
Patzelt, S. B., Vonau, S., Stampf, S., Att, W.
Assessing the feasibility and accuracy of digitizing edentulous jaws.
Journal of Americal Dental Association
.
144
(8), 914-920 (2013).
Andriessen, F. S., Rijkens, D. R., van der Meer, W. J., Wismeijer, D. W.
Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study.
Journal of Prosthetic Dentistry
.
111
(3), 186-194 (2014).
Gimenez, B., Ozcan, M., Martinez-Rus, F., Pradies, G.
Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth.
International Journal of Oral and Maxillofacial Implants
.
29
(4), 853-862 (2014).
Gimenez, B., Ozcan, M., Martinez-Rus, F., Pradies, G.
Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth.
Clinical Implant Dentistry and Related Research
.
17 Suppl 1
, e54-e64 (2015).
Papaspyridakos, P., et al.
Digital versus conventional implant impressions for edentulous patients: accuracy outcomes.
Clinical Oral Implants Research
.
27
(4), 465-472 (2016).
Flugge, T. V., Att, W., Metzger, M. C., Nelson, K.
Precision of Dental Implant Digitization Using Intraoral Scanners.
International Journal of Prosthodontics
.
29
(3), 277-283 (2016).
Kim, S. Y., et al.
Accuracy of dies captured by an intraoral digital impression system using parallel confocal imaging.
International Journal of Prosthodontics
.
26
(2), 161-163 (2013).
Ender, A., Mehl, A.
Influence of scanning strategies on the accuracy of digital intraoral scanning systems.
International Journal of Computerized Dentistry
.
16
(1), 11-21 (2013).
Optical Dental Impression
Intraoral Scanners
Arch Distortion
Coordinate System Extraction
Reverse Engineering
Reference Sphere
Dental Arch Distortion
X-y-z Directions
Best-fit Alignment
Mandibular Complete Arch Model
Reference Scanner
Computer-aided Design
Reverse Engineering Software
3D Printer
Cobalt Chromium Alloy
Industrial Model Scanner
Intraoral Scanner
Reference Coordinate
Reference Geometry
Sphere
Plane