1.
Gerard I J, Kersten-Oertel M, Hall J A, et al Brain shift in neuronavigation of brain tumors: an updated review of intra-operative ultrasound applications.
Front Oncol.
2021;
10
:618837. doi: 10.3389/fonc.2020.618837.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Bastos D C D A, Juvekar P, Tie Y, et al Challenges and opportunities of intraoperative 3D ultrasound with neuronavigation in relation to intraoperative MRI.
Front Oncol.
2021;
11
:656519. doi: 10.3389/fonc.2021.656519.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Reinertsen I, Lindseth F, Unsgaard G, et al Clinical validation of vessel-based registration for correction of brain-shift.
Med Image Anal.
2007;
11
(6):673–684. doi: 10.1016/j.media.2007.06.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Coupé P, Hellier P, Morandi X, et al 3D rigid registration of intraoperative ultrasound and preoperative MR brain images based on hyperechogenic structures.
Int J Biomed Imaging.
2012;
2012
(3):531319.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
5.
Farnia P, Makkiabadi B, Ahmadian A, et al. Curvelet based residual complexity objective function for non-rigid registration of pre-operative MRI with intra-operative ultrasound images// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando: IEEE, 2016: 1167-1170.
6.
Wein W, Ladikos A, Fuerst B, et al. Global registration of ultrasound to MRI using the LC2 metric for enabling neurosurgical guidance// Mori K, Sakuma I, Sato Y, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 34-41.
7.
Heinrich M P, Jenkinson M, Papież B W, et al. Towards realtime multimodal fusion for image-guided interventions using self-similarities// Mori K, Sakuma I, Sato Y, et al. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 187-194.
8.
Rivaz H, Chen S J S, Collins D L Automatic deformable MR-ultrasound registration for image-guided neurosurgery.
IEEE Trans Med Imaging.
2015;
34
(2):366–380. doi: 10.1109/TMI.2014.2354352.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Machado I, Toews M, George E, et al Deformable MRI-Ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and generality in multi-site data.
NeuroImage.
2019;
202
:116094. doi: 10.1016/j.neuroimage.2019.116094.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Ou Y, Sotiras A, Paragios N, et al DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting.
Med Image Anal.
2011;
15
(4):622–639. doi: 10.1016/j.media.2010.07.002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Arun K S, Huang T S, Blostein S D Least-squares fitting of two 3-D point sets.
IEEE Trans Pattern Anal Mach Intell.
1987;
PAMI-9
(5):698–700. doi: 10.1109/TPAMI.1987.4767965.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Bookstein F L Principal warps: Thin-plate splines and the decomposition of deformations.
IEEE Trans Pattern Anal Mach Intell.
1989;
11
(6):567–585. doi: 10.1109/34.24792.
[
CrossRef
]
[
Google Scholar
]
13.
Rohr K On 3D differential operators for detecting point landmarks.
Image Vis Comput.
1997;
15
(3):219–233. doi: 10.1016/S0262-8856(96)01127-4.
[
CrossRef
]
[
Google Scholar
]
14.
Heinrich M P. Closing the gap between deep and conventional image registration using probabilistic dense displacement networks// Shen Dinggang, Liu Tianming, Peters T M, et al. International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2019: 50-58.
15.
Xiao Y, Fortin M, Unsgård G, et al REtroSpective Evaluation of Cerebral Tumors (RESECT): A clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries.
Med Phys.
2017;
44
(7):3875–3882. doi: 10.1002/mp.12268.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Otsu N A threshold selection method from gray-level histograms.
IEEE Trans Syst Man Cybern.
1979;
9
(1):62–66. doi: 10.1109/TSMC.1979.4310076.
[
CrossRef
]
[
Google Scholar
]
17.
Xiao Y, Rivaz H, Chabanas M, et al Evaluation of MRI to ultrasound registration methods for brain shift correction: The CuRIOUS2018 challenge.
IEEE Trans Med Imaging.
2020;
39
(3):777–786. doi: 10.1109/TMI.2019.2935060.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Wein W. Brain-shift correction with image-based registration and landmark accuracy evaluation// Stoyanov D, Taylor Z, Aylward S, et al. Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Cham: Springer International Publishing, 2018: 146-151.
19.
Shams R, Boucher M-A, Kadoury S. Intra-operative brain shift correction with weighted locally linear correlations of 3DUS and MRI// Stoyanov D, Taylor Z, Aylward S, et al. Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Cham: Springer International Publishing, 2018: 179-184.
20.
Machado I, Toews M, Luo J, et al. Deformable MRI-ultrasound registration via attribute matching and mutual-saliency weighting for image-guided neurosurgery// Stoyanov D, Taylor Z, Aylward S, et al. Simulation, image processing, and ultrasound systems for assisted diagnosis and navigation. Cham: Springer International Publishing, 2018: 165-171.