1、(夫妻争执问题) 一对新婚夫妻为晚上看什么电视节目争执不下,丈夫(记为I方)要看足球比赛节目,而妻子(记为Ⅱ方)要看戏曲节目.他们新婚燕尔,相亲相爱,所以若这方面的行动不一致,则是很伤感情的.因此,这对夫妻间的争执是一次非零和对策。
2、(entry deterrence市场威慑) 设某市场已被Ⅱ方(场内者)占据,现I方(场外者)正在考虑是进去争夺(记为策略I1)还是不进去争夺(记为策略I2),而Ⅱ方相应应考虑的是采取合作共享的态度(记为策略Ⅱ1)还是采取坚决斗争的态度(记为策略Ⅱ2)。
3、(prisoner’s dilemma囚犯困境) 设有两个囚犯曾犯过大罪,现因犯小罪而被捕,正分别受警方审讯.这两个囚犯都明白:如果两人都拒不坦白犯过大罪,那么当局只能以当前的小罪而判处1年徒刑;要是两人都坦白犯过大罪,那么当局将判处9年徒刑;如果一人坦白,而另一人拒不坦白,那么坦白者将会立即获得释放,另一个将会被判处10年徒刑。(北京大学1999年研究生入学考试微观试题) 举出一个你在现实生活中遇到的囚犯两难困境的例子。
4、(两寡头降价竞争) 这一模型,在数学结构上,与上例完全相同。设某一市场上仅有两个寡头,他们分别都可以选择降价与不降价两种策略。
5、(打假) 设当局对商品采取查假行动的费用为a万元,查出假货后,罚款为b万元,且销毁的假货成本为c万元;若商人出售假货,而当局不采取查假行动,则商人可额外获利d万元,且社会的进一步损失为e万元。
6、(监督博弈)设税务局查税的费用为a万元,查出逃税后,罚款为b(b>a)万元,纳税人应纳的税金为c万元。则税务局与纳税人的该两人非零和对策模型的赢得表具体如下。
7、(boxed pigs智猪博弈) 设猪圈里有一个按钮与两只猪,大猪与小猪,按一次按钮,就会有10份食品进入,大猪与小猪同时吃的话,将分别能吃到7份与3份,但去按一次按钮,必须耗费a份食品,而且按按钮者,由于耽误了时间,还将少吃到2份食品。
当1<a<5时,Ⅱ2(等待)是小猪的占优策略,所以大猪只能采用策略I1(去按),于是,多劳者反而少得!这主要是小猪在此有机遇。
当a>5时,“等待”既是小猪的占优策略,也是大猪的占优策略,所以变成了占优战略均衡,大家都等待,陷入困境。
8、(两寡头产量竞争) 设某市场只有两个寡头厂商,其中厂商1与2的产量分别记为x与y,市场总产量记为 Q:=x+y. 又设,厂商1与2的产量边际成本都恒为2,而且都没有固定成本,也即他们的成本分别为2x与2y。 再设,将这些产品全部销售出去的平均价格函数为 P=8-Q.
于是,厂商1与2的利润分别为
9、(北京大学1995年研究生入学考试微观试题,招生专业:国民经济学、产业经济学、金融学、企业管理、管理科学与工程) A、B两企业利用广告进行竞争。若A、B两企业都作广告,在未来销售中,A企业可以获得20万元利润,B企业可以获得8万元利润;若A企业作广告,B企业不作广告,A企业可以获得25万元利润,B企业可以获得2万元利润;若A企业不作广告,B企业作广告,A企业可以获得10万元利润,B企业可以获得12万元利润;若A、B两企业都不作广告,A企业可以获得30万元利润,B企业可以获得6万元利润。
10、(北京大学1998年研究生入学考试微观试题,2003年浙江大学博士生入学考试微观试题) 家用电气市场上有两个厂商,各自都可以选择生产空调和彩电,彼此的利润如下列收益矩阵所示
11、可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益); 利润的大小取决于双方的策略组合(收益函数); 博弈有四种策略组合,其结局是:
(1)如果双方都不涨价,各得利润10单位;
(2)如果可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30;
(3)如果可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30;
(4)如果双方都涨价,可口可乐利润140,百事可乐利润35;
博弈的稳定状态有两个:都不涨价或者都涨价(均衡),均衡称为博弈的解,它是由博弈规则(即参与者采取什么策略会取得什么结局,市场的需求弹性、交叉价格弹性等)决定的。
博弈论与诺曼底战役决策
参考博客地址:http://blog.csdn.net/lionel_d 何为 博弈论 那就是若有多个人进行 博弈 ,假设他们都足够聪明(能力已经相当于计算机了),在他们都没有失误并采取最优策略后,一定有一个人胜出,在知道初状态及规则的情况下,求解最终必胜的初状态(即何人胜出)的一类问题的理论及方法。 1、定义P-position和N-positio...
​正如我们所见,均衡主导策略解决方案概念可能是一个有用的工具。在囚徒困境 ,一旦玩家 1 意识到自己有一个主导策略,他就不必考虑玩家 2 会做什么。玩家 1 知道他可以只发挥自己的主导策略,而且比发挥其他策略更好。所有玩家都具有主导策略的游戏仍然具有战略性,因为收益取决于其他玩家的行为,但最佳反应则不然。 原题出自 http://blog.csdn.net/youxin2012/article/details/8548621 97 0 1 2 0 或者 97 0 1 0 2 (提示:可用逆推法求出) 做个简单解释... 在此,模型为理想化,即所有人都是理性人,都从自身利益最大化考虑,现在做简单分析: 一般人会认为1号最危险,5号...