相关文章推荐
飞翔的大蒜  ·  javascript - ...·  2 年前    · 
玩命的豌豆  ·  Microsoft Visual C++ ...·  2 年前    · 
基于PaddleClas的PP-LCNet模型的动物图像识别与分类

一起养成写作习惯!这是我参与「掘金日新计划 · 4 月更文挑战」的第21天, 点击查看活动详情

项目地址: aistudio.baidu.com/aistudio/pr…

一、基于PP-LCNet的动物图像识别与分类

比赛地址 www.heywhale.com/home/activi…

1.数据集介绍

数据集是一个用于多分类任务的动物图像数据集,包含10种不同动物的图像。数据集来源由Google上的真实图像通过爬虫得到,图片尺寸大小以及格式不固定(包含jpg、jpeg以及png三种图像格式),另外对敏感信息进行了脱敏处理。

1.1训练集

训练集文件夹名为train_data,共有17803张图像,文件夹中包含10个子文件夹,文件名分别是butterfly、cat、chicken、cow、dog、elephant、horse、ragno、sheep、squirrel,文件名为对应文件夹下图像的类别,选手需自行读取标签信息。每个子文件夹下包含若干图像文件,数量约为1000-5000。

1.2测试集

测试集文件夹名为test_data,文件夹中包含8150张图像,选手需根据训练集建立模型,对测试集文件进行预测分类。

2.PP-LCNet介绍

在工业界真实落地的场景中,推理速度才是考量模型好坏的重要指标,然而,推理速度和准确性很难兼得。考虑到工业界有很多基于 Intel CPU 的应用,所以我们本次的工作旨在使骨干网络更好的适应 Intel CPU,从而得到一个速度更快、准确率更高的轻量级骨干网络,与此同时,目标检测、语义分割等下游视觉任务的性能也同样得到提升。针对 Intel CPU 设备以及其加速库 MKLDNN 设计了特定的骨干网络 PP-LCNet,比起其他的轻量级的 SOTA 模型,该骨干网络可以在不增加推理时间的情况下,进一步提升模型的性能,最终大幅度超越现有的 SOTA 模型。

二、数据准备

1.解压缩数据

!unzip -qoa data/data140388/traindata.zip -d data/
!unzip -qoa data/data140388/testdata.zip -d data/
!mv data/input/animal7479/* data/

2.生成数据列表

# paddlex安装
!pip install paddlex >log.log
!paddlex --split_dataset --format ImageNet --dataset_dir data/train_data/train_data --val_value 0.2
[32m[04-21 09:55:30 MainThread @logger.py:242][0m Argv: /opt/conda/envs/python35-paddle120-env/bin/paddlex --split_dataset --format ImageNet --dataset_dir data/train_data/train_data --val_value 0.2
[0m[33m[04-21 09:55:30 MainThread @utils.py:79][0m [5m[33mWRN[0m paddlepaddle version: 2.2.2. The dynamic graph version of PARL is under development, not fully tested and supported
[0m/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/parl/remote/communication.py:38: DeprecationWarning: 'pyarrow.default_serialization_context' is deprecated as of 2.0.0 and will be removed in a future version. Use pickle or the pyarrow IPC functionality instead.
  context = pyarrow.default_serialization_context()
[0m/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import MutableMapping
[0m/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Iterable, Mapping
[0m/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Sized
2022-04-21 09:55:34 [INFO]    Dataset split starts...[0m
[0m2022-04-21 09:55:34 [INFO]    Dataset split done.[0m
[0m2022-04-21 09:55:34 [INFO]    Train samples: 14246[0m
[0m2022-04-21 09:55:34 [INFO]    Eval samples: 3557[0m
[0m2022-04-21 09:55:34 [INFO]    Test samples: 0[0m
[0m2022-04-21 09:55:34 [INFO]    Split files saved in data/train_data/train_data[0m
[0m[0m[0m
with open('data/train_data/train_data/labels.txt','r') as f:
    lines=f.readlines()
    print(lines)
f_list=open('label_list.txt','w')    
print(len(lines))
for i in range(len(lines)):
    f_list.write(str(i)+' '+ lines[i])
f_list.close()
['butterfly\n', 'cat\n', 'chicken\n', 'cow\n', 'dog\n', 'elephant\n', 'horse\n', 'ragno\n', 'sheep\n', 'squirrel\n']

0.8的训练集,0.2的测试集。Train数量为: 14246、Eval 数量为: 3557

2022-04-20 01:02:48 [INFO]    Train samples: 14246
2022-04-20 01:02:48 [INFO]    Eval samples: 3557
2022-04-20 01:02:48 [INFO]    Test samples: 0

二、环境准备

PaddleClas下载,计划使用PaddleClas中的 PP-LCNet 进行训练

# !git clone https://gitee.com/paddlepaddle/PaddleClas.git --depth=1

三、修改代码

1.修改配置

以 PaddleClas/ppcls/configs/ImageNet/PPLCNet/PPLCNet_x0_25.yaml 为基础进行配置

# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 300
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
# model architecture
Arch:
  name: PPLCNet_x0_25
  class_num: 10
# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
        epsilon: 0.1
  Eval:
    - CELoss:
        weight: 1.0
Optimizer:
  name: Momentum
  momentum: 0.9
    name: Cosine
    learning_rate: 0.1
    warmup_epoch: 10
  regularizer:
    name: 'L2'
    coeff: 0.0001
# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: /home/aistudio/data/train_data/train_data/
      cls_label_path: train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - AutoAugment:
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    batch_transform_ops:
    - CutmixOperator:
        alpha: 0.2
    sampler:
      name: DistributedBatchSampler
      batch_size: 2048
      drop_last: False
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: False
  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: /home/aistudio/data/train_data/train_data/
      cls_label_path: val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 1024
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: False
Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ../label_list.txt
Metric:
  Train:
    - TopkAcc:
        topk: [1, 5]
  Eval:
    - TopkAcc:
        topk: [1, 5]

2.修改代码

修改self._cls_path为os.path.join(self._img_root,self._cls_path)

from __future__ import print_function
import numpy as np
import os
from .common_dataset import CommonDataset
class ImageNetDataset(CommonDataset):
    def _load_anno(self, seed=None):
        # print(self._cls_path)
        # print(self._img_root)
        self._cls_path=os.path.join(self._img_root,self._cls_path)
        assert os.path.exists(self._cls_path)
        assert os.path.exists(self._img_root)
        self.images = []
        self.labels = []
        with open(self._cls_path) as fd:
            lines = fd.readlines()
            if seed is not None:
                np.random.RandomState(seed).shuffle(lines)
            for l in lines:
                l = l.strip().split(" ")
                self.images.append(os.path.join(self._img_root, l[0]))
                self.labels.append(np.int64(l[1]))
                assert os.path.exists(self.images[-1])

四、模型训练

1.训练模型

没啥说的,配置文件都写好了,跑就完事了。当然配置文件主要做以下工作:

  • 一是数据集地址更改
  • 二是训练轮次、batch size更改
  • 三是数据增强配置
  • 2.注意事项

  • 一是使用预训练模型,傻子才从头开始训练,懂得都懂,掌声响起来
  • 二是不要使用aistudio中复制完整路径,因为复制了是错的
  • 例如:/home/aistudio/PPLCNet_x0_25.yaml路径,会变为/home/aistudio/.jupyter/lab/workspaces/PPLCNet_x0_25.yaml,简直让你防不胜防。

    !python3 tools/train.py \
        -c /home/aistudio/.jupyter/lab/workspaces/PPLCNet_x0_25.yaml \
        -o Arch.pretrained=False \
        -o Global.device=gpu
    /home/aistudio/PaddleClas
    Traceback (most recent call last):
      File "tools/train.py", line 29, in <module>
        args.config, overrides=args.override, show=False)
      File "/home/aistudio/PaddleClas/ppcls/utils/config.py", line 179, in get_config
        'config file({}) is not exist'.format(fname))
    AssertionError: config file(/home/aistudio/.jupyter/lab/workspaces/PPLCNet_x0_25.yaml) is not exist
    
    %cd ~/PaddleClas/
    !python3 tools/train.py \
        -c ../PPLCNet_x0_25.yaml \
        -o Arch.pretrained=True \
        -o Global.device=gpu
    

    74个epoch可达到91%的准确率,如时间宽裕,可继续提升准确率

    [2022/04/21 02:48:33] root INFO: [Train][Epoch 74/300][Iter: 0/7]lr: 0.08875, CELoss: 0.86730, loss: 0.86730, batch_cost: 14.51762s, reader_cost: 12.59892, ips: 141.06996 images/sec, eta: 6:24:28
    [2022/04/21 02:48:51] root INFO: [Train][Epoch 74/300][Avg]CELoss: 0.88821, loss: 0.88821
    [2022/04/21 02:49:06] root INFO: [Eval][Epoch 74][Iter: 0/4]CELoss: 0.43258, loss: 0.43258, top1: 0.88574, top5: 0.98633, batch_cost: 14.79859s, reader_cost: 13.25228, ips: 69.19578 images/sec
    [2022/04/21 02:49:07] root INFO: [Eval][Epoch 74][Avg]CELoss: 0.45654, loss: 0.45654, top1: 0.87855, top5: 0.99044
    [2022/04/21 02:49:07] root INFO: [Eval][Epoch 74][best metric: 0.914815859962857]
    [2022/04/21 02:49:07] root INFO: Already save model in ./output/PPLCNet_x0_25/epoch_74
    [2022/04/21 02:49:07] root INFO: Already save model in ./output/PPLCNet_x0_25/latest
    

    五、模型预测

    1.模型导出

    在上述模型导出命令中,所使用的配置文件需要与该模型的训练文件相同,在配置文件中有以下字段用于配置模型导出参数:

  • Global.image_shape:用于指定模型的输入数据尺寸,该尺寸不包含 batch 维度;
  • Global.save_inference_dir:用于指定导出的 inference 模型的保存位置;
  • Global.pretrained_model:用于指定训练过程中保存的模型权重文件路径,该路径无需包含模型权重文件后缀名 .pdparams。 上述命令将生成以下三个文件:
  • inference.pdmodel:用于存储网络结构信息;
  • inference.pdiparams:用于存储网络权重信息;
  • inference.pdiparams.info:用于存储模型的参数信息,在分类模型和识别模型中可忽略。
  • %cd ~/PaddleClas/
    !python tools/export_model.py \
        -c ../PPLCNet_x0_25.yaml \
        -o Global.pretrained_model=.//output/PPLCNet_x0_25/best_model \
        -o Global.save_inference_dir=./deploy/models/class_PPLCNet_x0_25_ImageNet_infer
    
    /home/aistudio/PaddleClas
    [2022/04/21 12:39:48] root INFO: 
    ===========================================================
    ==        PaddleClas is powered by PaddlePaddle !        ==
    ===========================================================
    ==                                                       ==
    ==   For more info please go to the following website.   ==
    ==                                                       ==
    ==       https://github.com/PaddlePaddle/PaddleClas      ==
    ===========================================================
    [2022/04/21 12:39:48] root INFO: Arch : 
    [2022/04/21 12:39:48] root INFO:     class_num : 10
    [2022/04/21 12:39:48] root INFO:     name : PPLCNet_x0_25
    [2022/04/21 12:39:48] root INFO: DataLoader : 
    [2022/04/21 12:39:48] root INFO:     Eval : 
    [2022/04/21 12:39:48] root INFO:         dataset : 
    [2022/04/21 12:39:48] root INFO:             cls_label_path : val_list.txt
    [2022/04/21 12:39:48] root INFO:             image_root : /home/aistudio/data/train_data/train_data/
    [2022/04/21 12:39:48] root INFO:             name : ImageNetDataset
    [2022/04/21 12:39:48] root INFO:             transform_ops : 
    [2022/04/21 12:39:48] root INFO:                 DecodeImage : 
    [2022/04/21 12:39:48] root INFO:                     channel_first : False
    [2022/04/21 12:39:48] root INFO:                     to_rgb : True
    [2022/04/21 12:39:48] root INFO:                 ResizeImage : 
    [2022/04/21 12:39:48] root INFO:                     resize_short : 256
    [2022/04/21 12:39:48] root INFO:                 CropImage : 
    [2022/04/21 12:39:48] root INFO:                     size : 224
    [2022/04/21 12:39:48] root INFO:                 NormalizeImage : 
    [2022/04/21 12:39:48] root INFO:                     mean : [0.485, 0.456, 0.406]
    [2022/04/21 12:39:48] root INFO:                     order : 
    [2022/04/21 12:39:48] root INFO:                     scale : 1.0/255.0
    [2022/04/21 12:39:48] root INFO:                     std : [0.229, 0.224, 0.225]
    [2022/04/21 12:39:48] root INFO:         loader : 
    [2022/04/21 12:39:48] root INFO:             num_workers : 4
    [2022/04/21 12:39:48] root INFO:             use_shared_memory : False
    [2022/04/21 12:39:48] root INFO:         sampler : 
    [2022/04/21 12:39:48] root INFO:             batch_size : 1024
    [2022/04/21 12:39:48] root INFO:             drop_last : False
    [2022/04/21 12:39:48] root INFO:             name : DistributedBatchSampler
    
    
    
    
        
    
    [2022/04/21 12:39:48] root INFO:             shuffle : False
    [2022/04/21 12:39:48] root INFO:     Train : 
    [2022/04/21 12:39:48] root INFO:         batch_transform_ops : 
    [2022/04/21 12:39:48] root INFO:             CutmixOperator : 
    [2022/04/21 12:39:48] root INFO:                 alpha : 0.2
    [2022/04/21 12:39:48] root INFO:         dataset : 
    [2022/04/21 12:39:48] root INFO:             cls_label_path : train_list.txt
    [2022/04/21 12:39:48] root INFO:             image_root : /home/aistudio/data/train_data/train_data/
    [2022/04/21 12:39:48] root INFO:             name : ImageNetDataset
    [2022/04/21 12:39:48] root INFO:             transform_ops : 
    [2022/04/21 12:39:48] root INFO:                 DecodeImage : 
    [2022/04/21 12:39:48] root INFO:                     channel_first : False
    [2022/04/21 12:39:48] root INFO:                     to_rgb : True
    [2022/04/21 12:39:48] root INFO:                 RandCropImage : 
    [2022/04/21 12:39:48] root INFO:                     size : 224
    [2022/04/21 12:39:48] root INFO:                 RandFlipImage : 
    [2022/04/21 12:39:48] root INFO:                     flip_code : 1
    [2022/04/21 12:39:48] root INFO:                 AutoAugment : None
    [2022/04/21 12:39:48] root INFO:                 NormalizeImage : 
    [2022/04/21 12:39:48] root INFO:                     mean : [0.485, 0.456, 0.406]
    [2022/04/21 12:39:48] root INFO:                     order : 
    [2022/04/21 12:39:48] root INFO:                     scale : 1.0/255.0
    [2022/04/21 12:39:48] root INFO:                     std : [0.229, 0.224, 0.225]
    [2022/04/21 12:39:48] root INFO:         loader : 
    [2022/04/21 12:39:48] root INFO:             num_workers : 4
    [2022/04/21 12:39:48] root INFO:             use_shared_memory : False
    [2022/04/21 12:39:48] root INFO:         sampler : 
    [2022/04/21 12:39:48] root INFO:             batch_size : 2048
    [2022/04/21 12:39:48] root INFO:             drop_last : False
    [2022/04/21 12:39:48] root INFO:             name : DistributedBatchSampler
    [2022/04/21 12:39:48] root INFO:             shuffle : True
    [2022/04/21 12:39:48] root INFO: Global : 
    [2022/04/21 12:39:48] root INFO:     checkpoints : None
    [2022/04/21 12:39:48] root INFO:     device : gpu
    [2022/04/21 12:39:48] root INFO:     epochs : 300
    [2022/04/21 12:39:48] root INFO:     eval_during_train : True
    [2022/04/21 12:39:48] root INFO:     eval_interval : 1
    [2022/04/21 12:39:48] root INFO:     image_shape : [3, 224, 224]
    [2022/04/21 12:39:48] root INFO:     output_dir : ./output/
    [2022/04/21 12:39:48] root INFO:     pretrained_model : .//output/PPLCNet_x0_25/best_model
    [2022/04/21 12:39:48] root INFO:     print_batch_step : 10
    [2022/04/21 12:39:48] root INFO:     save_inference_dir : ./deploy/models/class_PPLCNet_x0_25_ImageNet_infer
    [2022/04/21 12:39:48] root INFO:     save_interval : 1
    [2022/04/21 12:39:48] root INFO:     use_visualdl : False
    [2022/04/21 12:39:48] root INFO: Infer : 
    [2022/04/21 12:39:48] root INFO:     PostProcess : 
    [2022/04/21 12:39:48] root INFO:         class_id_map_file : ../label_list.txt
    [2022/04/21 12:39:48] root INFO:         name : Topk
    [2022/04/21 12:39:48] root INFO:         topk : 5
    [2022/04/21 12:39:48] root INFO:     batch_size : 10
    [2022/04/21 12:39:48] root INFO:     infer_imgs : docs/images/inference_deployment/whl_demo.jpg
    [2022/04/21 12:39:48] root INFO:     transforms : 
    [2022/04/21 12:39:48] root INFO:         DecodeImage : 
    [2022/04/21 12:39:48] root INFO:             channel_first : False
    [2022/04/21 12:39:48] root INFO:             to_rgb : True
    [2022/04/21 12:39:48] root INFO:         ResizeImage : 
    [2022/04/21 12:39:48] root INFO:             resize_short : 256
    [2022/04/21 12:39:48] root INFO:         CropImage : 
    [2022/04/21 12:39:48] root INFO:             size : 224
    [2022/04/21 12:39:48] root INFO:         NormalizeImage : 
    [2022/04/21 12:39:48] root INFO:             mean : [0.485, 0.456, 0.406]
    [2022/04/21 12:39:48] root INFO:             order : 
    [2022/04/21 12:39:48] root INFO:             scale : 1.0/255.0
    [2022/04/21 12:39:48] root INFO:             std : [0.229, 0.224, 0.225]
    [2022/04/21 12:39:48] root INFO:         ToCHWImage : None
    [2022/04/21 12:39:48] root INFO: Loss : 
    [2022/04/21 12:39:48] root INFO:     Eval : 
    [2022/04/21 12:39:48] root INFO:         CELoss : 
    [2022/04/21 12:39:48] root INFO:             weight : 1.0
    [2022/04/21 12:39:48] root INFO:     Train : 
    [2022/04/21 12:39:48] root INFO:         CELoss : 
    [2022/04/21 12:39:48] root INFO:             epsilon : 0.1
    [2022/04/21 12:39:48] root INFO:             weight : 1.0
    [2022/04/21 12:39:48] root INFO: Metric : 
    [2022/04/21 12:39:48] root INFO:     Eval : 
    [2022
    
    
    
    
        
    /04/21 12:39:48] root INFO:         TopkAcc : 
    [2022/04/21 12:39:48] root INFO:             topk : [1, 5]
    [2022/04/21 12:39:48] root INFO:     Train : 
    [2022/04/21 12:39:48] root INFO:         TopkAcc : 
    [2022/04/21 12:39:48] root INFO:             topk : [1, 5]
    [2022/04/21 12:39:48] root INFO: Optimizer : 
    [2022/04/21 12:39:48] root INFO:     lr : 
    [2022/04/21 12:39:48] root INFO:         learning_rate : 0.1
    [2022/04/21 12:39:48] root INFO:         name : Cosine
    [2022/04/21 12:39:48] root INFO:         warmup_epoch : 10
    [2022/04/21 12:39:48] root INFO:     momentum : 0.9
    [2022/04/21 12:39:48] root INFO:     name : Momentum
    [2022/04/21 12:39:48] root INFO:     regularizer : 
    [2022/04/21 12:39:48] root INFO:         coeff : 0.0001
    [2022/04/21 12:39:48] root INFO:         name : L2
    [2022/04/21 12:39:48] root INFO: train with paddle 2.2.2 and device CUDAPlace(0)
    W0421 12:39:48.412415   405 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1
    W0421 12:39:48.417142   405 device_context.cc:465] device: 0, cuDNN Version: 7.6.
    /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
      return (isinstance(seq, collections.Sequence) and
    

    2.模型预测配置

    在配置文件 configs/inference_cls.yaml 中有以下字段用于配置预测参数:

  • Global.infer_imgs:待预测的图片文件路径;
  • Global.inference_model_dir:inference 模型文件所在目录,该目录下需要有文件 inference.pdmodel 和 inference.pdiparams 两个文件;
  • Global.use_tensorrt:是否使用 TesorRT 预测引擎,默认为 False;
  • Global.use_gpu:是否使用 GPU 预测,默认为 True;
  • Global.enable_mkldnn:是否启用 MKL-DNN 加速库,默认为 False。注意 enable_mkldnn 与 use_gpu 同时为 True 时,将忽略 enable_mkldnn,而使用 GPU 预测;
  • Global.use_fp16:是否启用 FP16,默认为 False;
  • PreProcess:用于数据预处理配置;
  • PostProcess:由于后处理配置;
  • PostProcess.Topk.class_id_map_file:数据集 label 的映射文件,默认为 ./utils/imagenet1k_label_list.txt,该文件为 PaddleClas 所使用的 ImageNet 数据集 label 映射文件。
  • 如果使用 VisionTransformer 系列模型,如 DeiT_384, ViT_384 等,请注意模型的输入数据尺寸,部分模型需要修改参数: PreProcess.resize_short=384, PreProcess.resize=384。

    预测文件配置如下:

    Global:
      infer_imgs: "../data/testdata/testdata"
      inference_model_dir: "./deploy/models/class_PPLCNet_x0_25_ImageNet_infer"
      batch_size: 1
      use_gpu: True
      enable_mkldnn: True
      cpu_num_threads: 10
      enable_benchmark: True
      use_fp16: False
      ir_optim: True
      use_tensorrt: False
      gpu_mem: 8000
      enable_profile: False
    PreProcess:
      transform_ops:
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 0.00392157
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
            channel_num: 3
        - ToCHWImage:
    PostProcess:
      main_indicator: Topk
      Topk:
        topk: 5
        class_id_map_file: "../label_list.txt"
      SavePreLabel:
        save_dir: ./pre_label/Global:
      infer_imgs: "../data/testdata/testdata"
      inference_model_dir: "./deploy/models/class_PPLCNet_x0_25_ImageNet_infer"
      batch_size: 1
      use_gpu: True
      enable_mkldnn: True
      cpu_num_threads: 10
      enable_benchmark: True
      use_fp16: False
      ir_optim: True
      use_tensorrt: False
      gpu_mem: 8000
      enable_profile: False
    PreProcess:
      transform_ops:
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 0.00392157
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
            channel_num: 3
        - ToCHWImage:
    PostProcess:
      main_indicator: Topk
      Topk:
        topk: 5
        class_id_map_file: "../label_list.txt"
      SavePreLabel:
        save_dir: ./pre_label/Global:
      infer_imgs: "../data/testdata/testdata"
      inference_model_dir: "./deploy/models/class_PPLCNet_x0_25_ImageNet_infer"
      batch_size: 1
      use_gpu: True
      enable_mkldnn: True
      cpu_num_threads: 10
      enable_benchmark: True
      use_fp16: False
      ir_optim: True
      use_tensorrt: False
      gpu_mem: 8000
      enable_profile: False
    PreProcess:
      transform_ops:
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 0.00392157
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
            channel_num: 3
        - ToCHWImage:
    PostProcess:
      main_indicator: Topk
      Topk:
        topk: 5
        class_id_map_file: "../label_list.txt"
      SavePreLabel:
        save_dir: ./pre_label/
    

    3.预测保存修改

    直接修改预测脚本PaddleClas/deploy/python/predict_cls.py的main函数即可

    def main(config):
        cls_predictor = ClsPredictor(config)
        image_list = get_image_list(config["Global"]["infer_imgs"])
        batch_imgs = []
        batch_names = []
        cnt = 0
        # 写入文件
        f=open('result.csv','w')
        f.write('name,label\n')
        for idx, img_path in enumerate(image_list):
            img = cv2.imread(img_path)
            if img is None:
                logger.warning(
                    "Image file failed to read and has been skipped. The path: {}".
                    format(img_path))
            else:
                img = img[:, :, ::-1]
                batch_imgs.append(img)
                img_name = os.path.basename(img_path)
                batch_names.append(img_name)
                cnt += 1
            if cnt % config["Global"]["batch_size"] == 0 or (idx + 1
                                                             ) == len(image_list):
                if len(batch_imgs) == 0:
                    continue
                batch_results = cls_predictor.predict(batch_imgs)
                for number, result_dict in enumerate(batch_results):
                    filename = batch_names[number]
                    clas_ids = result_dict["class_ids"]
                    scores_str = "[{}]".format(", ".join("{:.2f}".format(
                        r) for r in result_dict["scores"]))
                    label_names = result_dict["label_names"]
                    print("{}:\tclass id(s): {}, score(s): {}, label_name(s): {}".
                          format(filename, clas_ids, scores_str, label_names))
                    # 保存预测
                    f.write(filename+','+label_names[0]+'\n')
                batch_imgs = []
                batch_names = []
        if cls_predictor.benchmark:
            cls_predictor.auto_logger.report()
        return
    
    # 覆盖原预测脚本
    !cp ~/predict_cls.py ~/PaddleClas/deploy/python/
    %cd ~/PaddleClas/
    # 开始预测
    !python ./deploy/python/predict_cls.py -c ../inference_cls.yaml
    
    0.jpeg:    class id(s): [1, 2, 9, 0, 3], score(s): [0.71, 0.07, 0.06, 0.04, 0.03], label_name(s): ['cat', 'chicken', 'squirrel', 'butterfly', 'cow']
    1.jpeg:    class id(s): [1, 4, 9, 2, 6], score(s): [0.78, 0.14, 0.02, 0.02, 0.01], label_name(s): ['cat', 'dog', 'squirrel', 'chicken', 'horse']
    10.jpeg:    class id(s): [2, 3, 4, 5, 6], score(s): [0.53, 0.15, 0.15, 0.06, 0.05], label_name(s): ['chicken', 'cow', 'dog', 'elephant', 'horse']
    100.jpeg:    class id(s): [1, 4, 9, 2, 0], score(s): [0.61, 0.16, 0.06, 0.04, 0.03], label_name(s): ['cat', 'dog', 'squirrel', 'chicken', 'butterfly']
    1000.jpg:    class id(s): [8, 2, 5, 0, 1], score(s): [0.74, 0.11, 0.03, 0.02, 0.02], label_name(s): ['sheep', 'chicken', 'elephant', 'butterfly', 'cat']
    

    六、提交&总结

    下载PaddlleClas下的result.csv并提交

    %cd ~
    !head ~/PaddleClas/result.csv
    
    /home/aistudio
    name,label
    0.jpeg,cat
    1.jpeg,cat
    10.jpeg,chicken
    100.jpeg,cat
    1000.jpg,sheep
    1001.jpg,sheep
    1002.jpg,sheep
    1003.jpg,sheep
    1004.jpg,sheep
    
  • 一是选择训练模型,其中原数据脚本需要修改
  • 二是预测,需修改预测脚本用于保存结果
  • 三是可持续训练,以获取更好的成绩
  • 项目地址: aistudio.baidu.com/aistudio/pr…

    分类:
    人工智能
    标签: