面试题:InnoDB中一棵B+树能存多少行数据?
程序员的成长之路
互联网/程序员/成长/职场
关注
阅读本文大概需要 5 分钟。
作者:李平 | 来源:个人博客
一、InnoDB 一棵 B+ 树可以存放多少行数据?
InnoDB 一棵 B+ 树可以存放多少行数据?
这个问题的简单回答是: 约 2 千万 。
为什么是这么多呢?
因为这是可以算出来的,要搞清楚这个问题,我们先从 InnoDB 索引数据结构、数据组织方式说起。
我们都知道计算机在存储数据的时候,有 最小存储单元 ,这就好比我们今天进行现金的流通最小单位是一毛。
在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是 512 字节,而文件系统(例如XFS/EXT4)他的最小单元是块,一个块的大小是 4k,而对于我们的 InnoDB 存储引擎也有自己的最小储存单元——页(Page),一个页的大小是 16K。
二、下面几张图可以帮你理解最小存储单元
文件系统中一个文件大小只有1个字节,但不得不占磁盘上4KB的空间。
Innodb 的所有数据文件(后缀为 ibd 的文件),他的大小始终都是 16384(16k)的整数倍。
磁盘扇区、文件系统、InnoDB 存储引擎都有各自的最小存储单元。
在 MySQL 中我们的 InnoDB 页的大小默认是 16k ,当然也可以通过参数设置:
数据表中的数据都是存储在页中的,所以一个页中能存储多少行数据呢?
假设一行数据的大小是 1k,那么一个页可以存放 16 行这样的数据。
如果 数据库 只按这样的方式存储,那么如何查找数据就成为一个问题,因为我们不知道要查找的数据存在哪个页中,也不可能把所有的页遍历一遍,那样太慢了。
所以人们想了一个办法,用 B+ 树的方式组织这些数据。如图所示:
我们先将数据记录按主键进行排序,分别存放在不同的页中(为了便于理解我们这里一个页中只存放 3 条记录,实际情况可以存放很多), 除了存放数据的页以外,还有存放键值+指针的页 ,如图中page number=3 的页,该页存放键值和指向数据页的指针,这样的页由 N 个键值 + 指针组成。
当然它也是排好序的 。
这样的数据组织形式,我们称为索引组织表。
现在来看下,要查找一条数据,怎么查?
如 select * from user where id=5;
这里 id 是主键,我们通过这棵 B+ 树来查找, 首先找到根页 ,你怎么知道 user 表的根页在哪呢?
其实每张表的根页位置在表空间文件中是固定的,即 page number=3 的页(这点我们下文还会进一步证明),找到根页后通过二分查找法,定位到 id=5 的数据应该在指针 P5 指向的页中,那么进一步去 page number=5 的页中查找,同样通过二分查询法即可找到 id=5 的记录:
| 5 | zhao2 | 27 |
现在我们清楚了 InnoDB 中主键索引 B+ 树是如何组织数据、查询数据的,我们总结一下:
1、InnoDB 存储引擎的 最小存储单元是页 ,页可以用于 存放数据 也可以用于 存放键值 + 指针 ,在 B+ 树中叶子节点存放数据,非叶子节点存放键值 + 指针。
2、 索引组织表 通过 非叶子节点 的 二分查找法以及指针 确定数据在哪个页中,进而在去数据页中查找到需要的数据;
三、那么回到我们开始的问题,通常一棵 B+ 树可以存放多少行数据?
这里我们先假设 B+ 树高为 2,即存在一个根节点和若干个叶子节点,那么这棵 B+ 树的存放总记录数为:根节点指针数 * 单个叶子节点记录行数。
上文我们已经说明单个叶子节点(页)中的记录数 =16K/1K=16。(这里假设一行记录的数据大小为 1k,实际上现在很多互联网业务数据记录大小通常就是 1K 左右)。
那么现在我们需要计算出非叶子节点能存放多少指针?
其实这也很好算,我们假设主键 ID 为 bigint 类型,长度为 8 字节,而指针大小在 InnoDB 源码中设置为 6 字节,这样一共 14 字节,我们一个页中能存放多少这样的单元,其实就代表有多少指针,即 16384/14=1170。
那么可以算出一棵高度为 2 的 B+ 树,能存放 1170*16=18720 条这样的数据记录。
根据同样的原理我们可以算出一个高度为 3 的 B+ 树可以存放: 1170*1170*16=21902400 条这样的记录。
所以在 InnoDB 中 B+ 树高度一般为 1-3 层,它就能满足千万级的 数据存储 。
在查找数据时一次页的查找代表一次 IO,所以通过主键索引查询通常只需要 1-3 次 IO 操作即可查找到数据。
四、怎么得到 InnoDB 主键索引 B+ 树的高度?
上面我们通过推断得出 B+ 树的高度通常是 1-3,下面我们从另外一个侧面证明这个结论。
在 InnoDB 的表空间文件中,约定 page numbe r为 3 的代表主键索引的根页,而在根页偏移量为 64 的地方存放了该 B+ 树的 page level。
如果 page level 为 1,树高为 2,page level 为 2,则树高为 3。
即 B+ 树的高度 =page level+1;
下面我们将从实际环境中尝试找到这个 page level。
在实际操作之前,你可以通过 InnoDB 元数据表确认主键索引根页的 page number 为 3,你也可以从《InnoDB 存储引擎》这本书中得到确认。
执行结果:
可以看出数据库 dbt3 下的 customer 表、lineitem 表主键索引根页的 page number 均为 3,而其他的二级索引 page number 为 4。
关于二级索引与主键索引的区别请参考 MySQL 相关书籍,本文不在此介绍。
下面我们对数据库表空间文件做想相关的解析:
因为主键索引 B+ 树的根页在整个表空间文件中的第 3 个页开始,所以可以算出它在文件中的偏移量:16384*3=49152(16384 为页大小)。
另外根据《InnoDB 存储引擎》中描述在根页的 64 偏移量位置前 2 个字节,保存了 page level 的值,因此我们想要的 page level 的值在整个文件中的偏移量为:16384*3+64=49152+64=49216,前 2 个字节中。
接下来我们用 hexdump 工具,查看表空间文件指定偏移量上的数据:
linetem 表的 page level 为 2,B+ 树高度为 page level+1=3;
region 表的 page level 为 0,B+ 树高度为 page level+1=1;
customer 表的 page level 为 2,B+ 树高度为 page level+1=3;
这三张表的数据量如下:
五、小结
lineitem 表的数据行数为 600 多万,B+ 树高度为 3,customer 表数据行数只有 15 万,B+ 树高度也为 3。
可以看出尽管数据量差异较大,这两个表树的高度都是 3,换句话说 这两个表通过索引查询效率并没有太大差异,因为都只需要做 3 次 IO 。
那么如果有一张表行数是一千万,那么他的 B+ 树高度依旧是 3,查询效率仍然不会相差太大。
region 表只有 5 行数据,当然他的 B+ 树高度为 1。
六、最后回顾一道面试题
有一道 MySQL 的面试题,为什么 MySQL 的索引要使用 B+ 树而不是其它树形结构?
比如 B 树?
现在这个问题的复杂版本可以参考本文;
他的简单版本回答是:
因为 B 树不管叶子节点还是非叶子节点,都会保存数据 ,这样导致在非叶子节点中能保存的指针数量变少(有些资料也称为扇出),指针少的情况下要保存大量数据,只能增加树的高度,导致 IO 操作变多,查询性能变低。
七、总结
本文从一个问题出发,逐步介绍了 InnoDB 索引组织表的原理、查询方式,并结合已有知识,回答该问题,结合实践来证明。
当然为了表述简单易懂,文中忽略了一些细枝末节,比如 一个页中不可能所有空间都用于存放数据 ,它还会存放一些少量的其他字段比如 page level,index number 等等,另外还有页的填充因子也导致一个页不可能全部用于保存数据。
关于二级索引数据存取方式可以参考 MySQL 相关书籍,他的要点是结合主键索引进行回表查询。
- 一、InnoDB 一棵 B+ 树可以存放多少行数据?
- 三、那么回到我们开始的问题,通常一棵 B+ 树可以存放多少行数据?
- 四、怎么得到 InnoDB 主键索引 B+ 树的高度?
- 六、最后回顾一道面试题
- 七、总结