郑戍华, 陈梦心, 王向周, 弓雪雅. 一种基于光流双输入网络的微表情顶点帧检测方法[J]. 北京理工大学学报自然版, 2022, 42(7): 749-754. doi: 10.15918/j.tbit1001-0645.2021.135
引用本文:
郑戍华, 陈梦心, 王向周, 弓雪雅. 一种基于光流双输入网络的微表情顶点帧检测方法[J]. 北京理工大学学报自然版, 2022, 42(7): 749-754.
doi:
10.15918/j.tbit1001-0645.2021.135
ZHENG Shuhua, CHEN Mengxin, WANG Xiangzhou, GONG Xueya. A Micro-Expression Apex Frame Spotting Method Based on Optical-Flow-Dual-Input Network[J]. Transactions of Beijing institute of Technology, 2022, 42(7): 749-754. doi: 10.15918/j.tbit1001-0645.2021.135
Citation:
ZHENG Shuhua, CHEN Mengxin, WANG Xiangzhou, GONG Xueya. A Micro-Expression Apex Frame Spotting Method Based on Optical-Flow-Dual-Input Network[J].
Transactions of Beijing institute of Technology
, 2022, 42(7): 749-754.
doi:
10.15918/j.tbit1001-0645.2021.135
郑戍华, 陈梦心, 王向周, 弓雪雅. 一种基于光流双输入网络的微表情顶点帧检测方法[J]. 北京理工大学学报自然版, 2022, 42(7): 749-754. doi: 10.15918/j.tbit1001-0645.2021.135
引用本文:
郑戍华, 陈梦心, 王向周, 弓雪雅. 一种基于光流双输入网络的微表情顶点帧检测方法[J]. 北京理工大学学报自然版, 2022, 42(7): 749-754.
doi:
10.15918/j.tbit1001-0645.2021.135
ZHENG Shuhua, CHEN Mengxin, WANG Xiangzhou, GONG Xueya. A Micro-Expression Apex Frame Spotting Method Based on Optical-Flow-Dual-Input Network[J]. Transactions of Beijing institute of Technology, 2022, 42(7): 749-754. doi: 10.15918/j.tbit1001-0645.2021.135
Citation:
ZHENG Shuhua, CHEN Mengxin, WANG Xiangzhou, GONG Xueya. A Micro-Expression Apex Frame Spotting Method Based on Optical-Flow-Dual-Input Network[J].
Transactions of Beijing institute of Technology
, 2022, 42(7): 749-754.
doi:
10.15918/j.tbit1001-0645.2021.135
微表情顶点帧蕴含着丰富的微表情信息,为了准确地检测出微表情顶点帧,本文提出了一种基于光流特征的神经网络分类,并利用先验知识规则进行取舍的检测方法. 该方法针对固定滑窗大小内的图像进行光流信息提取,利用双输入特征提取网络对
x
,
y
方向的光流信息进行时空特征提取,并进行分类,经根据微表情先验知识所设计的取舍规则后处理后,改善了检测准确度. 实验结果表明,在数据集CASMEⅡ上测试,顶点定位率(apex spotting rate,ASR)指标达到了0.945,
F
1
-score指标达到了0.925.
微表情顶点帧 /
双输入网络 /
分类后处理
Abstract:
Micro-expression apex frame contains abundant micro-expression information. In order to spot the apex frame accurately, a neural network classification was proposed based on optical flow characteristics. Taking prior knowledge as rules, a detection method was designed to realize micro-expression apex frame spotting. Firstly, optical flow information was extracted from the image in a fixed size sliding window. And then, the spatial and temporal features of optical flow information in x and y directions was extracted and classified based on dual input network. Finally, according to the trade-off rules based on prior knowledge of micro expression, a post-processing was carried out to improve the detection accuracy. The experimental results on data set CASMEⅡtesting show that the apex spotting rate (ASR) and
F
1
-score can reach up to 0.945 and 0.925 respectively.
Key words:
micro-expression apex frame /
dual input network /
classification post processing