Board
of markers
C
CharucoBoard
ChArUco board Specific class for ChArUco boards. A ChArUco board is a planar board where the markers are placed inside the white squares of a chessboard. The benefits of ChArUco boards is that they provide both, ArUco markers versatility and chessboard corner precision, which is important for calibration and pose estimation. This class also allows the easy creation and drawing of ChArUco boards
C
DetectorParameters
Parameters for the detectMarker process:
C
Dictionary
Dictionary/Set of markers. It contains the inner codification
C
GridBoard
Planar board with grid arrangement of markers More common type of board. All markers are placed in the same plane in a grid arrangment. The board can be drawn using
drawPlanarBoard()
function (
C
BackgroundSubtractorCNT
Background subtraction based on counting
C
BackgroundSubtractorGMG
Background Subtractor module based on the algorithm given in
[69]
C
BackgroundSubtractorGSOC
Implementation of the different yet better algorithm which is called GSOC, as it was implemented during GSOC and was not originated from any paper
C
BackgroundSubtractorLSBP
Background Subtraction using Local
SVD
Binary Pattern. More details about the algorithm can be found at
[74]
C
BackgroundSubtractorLSBPDesc
This is for calculation of the LSBP descriptors
C
BackgroundSubtractorMOG
Gaussian Mixture-based Background/Foreground Segmentation
Algorithm
C
SyntheticSequenceGenerator
Synthetic frame sequence generator for testing background subtraction algorithms
C
Retina
Class which allows the Gipsa/Listic Labs model to be used with OpenCV
C
RetinaFastToneMapping
Wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV
Retina
model parameters structure
C
IplMagnoParameters
Inner Plexiform Layer Magnocellular channel (IplMagno)
C
OPLandIplParvoParameters
Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters
C
SegmentationParameters
Parameter structure that stores the transient events detector setup parameters
C
TransientAreasSegmentationModule
Class which provides a transient/moving areas segmentation module
C
Bridge
Type conversion class for converting OpenCV and native C++ types
C
CustomPattern
C
descriptorExtractor
Caffe based 3D images descriptor. A class to extract features from an image. The so obtained descriptors can be used for classification and pose estimation goals
[207]
C
icoSphere
Icosohedron based camera view data generator. The class create some sphere views of camera towards a 3D object meshed from .ply files
[83]
C
BackgroundSubtractorFGD
The class discriminates between foreground and background pixels by building and maintaining a model of the background
C
BackgroundSubtractorGMG
Background/Foreground Segmentation
Algorithm
C
BackgroundSubtractorMOG
Gaussian Mixture-based Background/Foreground Segmentation
Algorithm
C
BackgroundSubtractorMOG2
Gaussian Mixture-based Background/Foreground Segmentation
Algorithm
C
BroxOpticalFlow
Class computing the optical flow for two images using Brox et al Optical Flow algorithm (
[26]
)
C
BufferPool
BufferPool
for use with CUDA streams
C
CannyEdgeDetector
Base class for Canny Edge
Detector
. :
C
CascadeClassifier
Cascade classifier class used for object detection. Supports HAAR and LBP cascades. :
C
CLAHE
Base class for Contrast Limited Adaptive Histogram Equalization. :
C
Convolution
Base class for convolution (or cross-correlation) operator. :
C
CornernessCriteria
Base class for Cornerness Criteria computation. :
C
CornersDetector
Base class for Corners
Detector
. :
C
DenseOpticalFlow
Base interface for dense optical flow algorithms
C
DensePyrLKOpticalFlow
Class used for calculating a dense optical flow
C
DescriptorMatcher
Abstract base class for matching keypoint descriptors
C
DeviceInfo
Class providing functionality for querying the specified GPU properties
C
DFT
Base class for
DFT
operator as a
cv::Algorithm
. :
C
DisparityBilateralFilter
Class refining a disparity map using joint bilateral filtering. :
C
Event
C
EventAccessor
Class that enables getting cudaEvent_t from
cuda::Event
C
FarnebackOpticalFlow
Class computing a dense optical flow using the Gunnar Farneback's algorithm
C
FastFeatureDetector
Wrapping class for feature detection using the FAST method
C
FastOpticalFlowBM
C
Feature2DAsync
Abstract base class for CUDA asynchronous 2D image feature detectors and descriptor extractors
C
FGDParams
C
Filter
Common interface for all CUDA filters :
▼C
GpuMat
Base storage class for GPU memory with reference counting
C
Allocator
C
HOG
The class implements Histogram of Oriented Gradients (
[37]
) object detector
C
HostMem
Class with reference counting wrapping special memory type allocation functions from CUDA
C
HoughCirclesDetector
Base class for circles detector algorithm. :
C
HoughLinesDetector
Base class for lines detector algorithm. :
C
HoughSegmentDetector
Base class for line segments detector algorithm. :
C
ImagePyramid
C
LookUpTable
Base class for transform using lookup table
C
OpticalFlowDual_TVL1
Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
C
ORB
Class implementing the
ORB
(
oriented BRIEF
) keypoint detector and descriptor extractor
C
SparseOpticalFlow
Base interface for sparse optical flow algorithms
C
SparsePyrLKOpticalFlow
Class used for calculating a sparse optical flow
C
StereoBeliefPropagation
Class computing stereo correspondence using the belief propagation algorithm. :
C
StereoBM
Class computing stereo correspondence (disparity map) using the block matching algorithm. :
C
StereoConstantSpaceBP
Class computing stereo correspondence using the constant space belief propagation algorithm. :
C
Stream
This class encapsulates a queue of asynchronous calls
C
StreamAccessor
Class that enables getting cudaStream_t from
cuda::Stream
C
SURF_CUDA
Class used for extracting Speeded Up Robust Features (SURF) from an image. :
C
TargetArchs
Class providing a set of static methods to check what NVIDIA* card architecture the CUDA module was built for
C
TemplateMatching
Base class for Template Matching. :
C
EncoderCallBack
Callbacks for CUDA video encoder
C
EncoderParams
Different parameters for CUDA video encoder
C
FormatInfo
Struct providing information about video file format. :
C
RawVideoSource
Interface for video demultiplexing. :
C
VideoReader
Video reader interface
C
VideoWriter
Video writer interface
▼N
functional_detail
C
FloatType
▼N
vec_math_detail
C
SatCastHelper
C
SatCastHelper< 1, VecD >
C
SatCastHelper< 2, VecD >
C
SatCastHelper< 3, VecD >
C
SatCastHelper< 4, VecD >
C
abs_func
C
abs_func< double >
C
abs_func< float >
C
abs_func< schar >
C
abs_func< short >
C
abs_func< uchar >
C
abs_func< uint >
C
abs_func< ushort >
C
absdiff_func
C
acos_func
C
acos_func< double >
C
acos_func< float >
C
acos_func< schar >
C
acos_func< short >
C
acos_func< uchar >
C
acos_func< uint >
C
acos_func< ushort >
C
acosh_func
C
acosh_func< double >
C
acosh_func< float >
C
acosh_func< schar >
C
acosh_func< short >
C
acosh_func< uchar >
C
acosh_func< uint >
C
acosh_func< ushort >
C
AffineMapPtr
C
AffineMapPtrSz
C
ArrayWrapper
C
asin_func
C
asin_func< double >
C
asin_func< float >
C
asin_func< schar >
C
asin_func< short >
C
asin_func< uchar >
C
asin_func< uint >
C
asin_func< ushort >
C
asinh_func
C
asinh_func< double >
C
asinh_func< float >
C
asinh_func< schar >
C
asinh_func< short >
C
asinh_func< uchar >
C
asinh_func< uint >
C
asinh_func< ushort >
C
atan2_func
C
atan2_func< double >
C
atan2_func< float >
C
atan2_func< schar >
C
atan2_func< short >
C
atan2_func< uchar >
C
atan2_func< uint >
C
atan2_func< ushort >
C
atan_func
C
atan_func< double >
C
atan_func< float >
C
atan_func< schar >
C
atan_func< short >
C
atan_func< uchar >
C
atan_func< uint >
C
atan_func< ushort >
C
atanh_func
C
atanh_func< double >
C
atanh_func< float >
C
atanh_func< schar >
C
atanh_func< short >
C
atanh_func< uchar >
C
atanh_func< uint >
C
atanh_func< ushort >
▼C
Avg
C
rebind
C
BGR_to_BGRA_func
C
BGR_to_GRAY_func
C
BGR_to_HLS4_FULL_func
C
BGR_to_HLS4_FULL_func< float >
C
BGR_to_HLS4_func
C
BGR_to_HLS4_func< float >
C
BGR_to_HLS_FULL_func
C
BGR_to_HLS_FULL_func< float >
C
BGR_to_HLS_func
C
BGR_to_HLS_func< float >
C
BGR_to_HSV4_FULL_func
C
BGR_to_HSV4_FULL_func< float >
C
BGR_to_HSV4_func
C
BGR_to_HSV4_func< float >
C
BGR_to_HSV_FULL_func
C
BGR_to_HSV_FULL_func< float >
C
BGR_to_HSV_func
C
BGR_to_HSV_func< float >
C
BGR_to_Lab4_func
C
BGR_to_Lab_func
C
BGR_to_Luv4_func
C
BGR_to_Luv_func
C
BGR_to_RGB_func
C
BGR_to_RGBA_func
C
BGR_to_XYZ4_func
C
BGR_to_XYZ_func
C
BGR_to_YCrCb4_func
C
BGR_to_YCrCb_func
C
BGR_to_YUV4_func
C
BGR_to_YUV_func
C
BGRA_to_BGR_func
C
BGRA_to_GRAY_func
C
BGRA_to_HLS4_FULL_func
C
BGRA_to_HLS4_FULL_func< float >
C
BGRA_to_HLS4_func
C
BGRA_to_HLS4_func< float >
C
BGRA_to_HLS_FULL_func
C
BGRA_to_HLS_FULL_func< float >
C
BGRA_to_HLS_func
C
BGRA_to_HLS_func< float >
C
BGRA_to_HSV4_FULL_func
C
BGRA_to_HSV4_FULL_func< float >
C
BGRA_to_HSV4_func
C
BGRA_to_HSV4_func< float >
C
BGRA_to_HSV_FULL_func
C
BGRA_to_HSV_FULL_func< float >
C
BGRA_to_HSV_func
C
BGRA_to_HSV_func< float >
C
BGRA_to_Lab4_func
C
BGRA_to_Lab_func
C
BGRA_to_Luv4_func
C
BGRA_to_Luv_func
C
BGRA_to_RGB_func
C
BGRA_to_RGBA_func
C
BGRA_to_XYZ4_func
C
BGRA_to_XYZ_func
C
BGRA_to_YCrCb4_func
C
BGRA_to_YCrCb_func
C
BGRA_to_YUV4_func
C
BGRA_to_YUV_func
C
binary_function
C
BinaryNegate
C
BinaryTransformPtr
C
BinaryTransformPtrSz
C
BinaryTupleAdapter
C
Binder1st
C
Binder2nd
C
bit_and
C
bit_lshift
C
bit_not
C
bit_or
C
bit_rshift
C
bit_xor
C
Block
C
BrdBase
C
BrdConstant
C
BrdReflect
C
BrdReflect101
C
BrdReplicate
C
BrdWrap
C
CommonAreaInterPtr
C
CommonAreaInterPtrSz
C
ConstantPtr
C
ConstantPtrSz
C
ConvertTuple
C
cos_func
C
cos_func< double >
C
cos_func< float >
C
cos_func< schar >
C
cos_func< short >
C
cos_func< uchar >
C
cos_func< uint >
C
cos_func< ushort >
C
cosh_func
C
cosh_func< double >
C
cosh_func< float >
C
cosh_func< schar >
C
cosh_func< short >
C
cosh_func< uchar >
C
cosh_func< uint >
C
cosh_func< ushort >
C
CountNonZeroExprBody
C
CubicInterPtr
C
CubicInterPtrSz
C
DefaultCopyPolicy
C
DefaultGlobReducePolicy
C
DefaultHistogramPolicy
C
DefaultReduceToVecPolicy
C
DefaultSplitMergePolicy
C
DefaultTransformPolicy
C
DefaultTransposePolicy
C
DerivXPtr
C
DerivXPtrSz
C
DerivYPtr
C
DerivYPtrSz
C
direction_func
C
DisableIf
C
DisableIf< false, T >
C
divides
C
DynamicSharedMem
C
DynamicSharedMem< double >
C
EnableIf
C
EnableIf< true, T >
C
equal_to
C
exp10_func
C
exp10_func< double >
C
exp10_func< float >
C
exp10_func< schar >
C
exp10_func< short >
C
exp10_func< uchar >
C
exp10_func< uint >
C
exp10_func< ushort >
C
exp2_func
C
exp2_func< double >
C
exp2_func< float >
C
exp2_func< schar >
C
exp2_func< short >
C
exp2_func< uchar >
C
exp2_func< uint >
C
exp2_func< ushort >
C
exp_func
C
exp_func< double >
C
exp_func< float >
C
exp_func< schar >
C
exp_func< short >
C
exp_func< uchar >
C
exp_func< uint >
C
exp_func< ushort >
C
Expr
C
FindMaxValExprBody
C
FindMinMaxValExprBody
C
FindMinValExprBody
C
GlobPtr
Structure similar to
cv::cudev::GlobPtrSz
but containing only a pointer and row step
C
GlobPtrSz
Lightweight class encapsulating pitched memory on a GPU and passed to nvcc-compiled code (CUDA kernels)
C
GpuMat_
C
GRAY_to_BGR_func
C
GRAY_to_BGRA_func
C
greater
C
greater_equal
C
HistogramBody
C
HLS4_to_BGR_FULL_func
C
HLS4_to_BGR_FULL_func< float >
C
HLS4_to_BGR_func
C
HLS4_to_BGR_func< float >
C
HLS4_to_BGRA_FULL_func
C
HLS4_to_BGRA_FULL_func< float >
C
HLS4_to_BGRA_func
C
HLS4_to_BGRA_func< float >
C
HLS4_to_RGB_FULL_func
C
HLS4_to_RGB_FULL_func< float >
C
HLS4_to_RGB_func
C
HLS4_to_RGB_func< float >
C
HLS4_to_RGBA_FULL_func
C
HLS4_to_RGBA_FULL_func< float >
C
HLS4_to_RGBA_func
C
HLS4_to_RGBA_func< float >
C
HLS_to_BGR_FULL_func
C
HLS_to_BGR_FULL_func< float >
C
HLS_to_BGR_func
C
HLS_to_BGR_func< float >
C
HLS_to_BGRA_FULL_func
C
HLS_to_BGRA_FULL_func< float >
C
HLS_to_BGRA_func
C
HLS_to_BGRA_func< float >
C
HLS_to_RGB_FULL_func
C
HLS_to_RGB_FULL_func< float >
C
HLS_to_RGB_func
C
HLS_to_RGB_func< float >
C
HLS_to_RGBA_FULL_func
C
HLS_to_RGBA_FULL_func< float >
C
HLS_to_RGBA_func
C
HLS_to_RGBA_func< float >
C
HSV4_to_BGR_FULL_func
C
HSV4_to_BGR_FULL_func< float >
C
HSV4_to_BGR_func
C
HSV4_to_BGR_func< float >
C
HSV4_to_BGRA_FULL_func
C
HSV4_to_BGRA_FULL_func< float >
C
HSV4_to_BGRA_func
C
HSV4_to_BGRA_func< float >
C
HSV4_to_RGB_FULL_func
C
HSV4_to_RGB_FULL_func< float >
C
HSV4_to_RGB_func
C
HSV4_to_RGB_func< float >
C
HSV4_to_RGBA_FULL_func
C
HSV4_to_RGBA_FULL_func< float >
C
HSV4_to_RGBA_func
C
HSV4_to_RGBA_func< float >
C
HSV_to_BGR_FULL_func
C
HSV_to_BGR_FULL_func< float >
C
HSV_to_BGR_func
C
HSV_to_BGR_func< float >
C
HSV_to_BGRA_FULL_func
C
HSV_to_BGRA_FULL_func< float >
C
HSV_to_BGRA_func
C
HSV_to_BGRA_func< float >
C
HSV_to_RGB_FULL_func
C
HSV_to_RGB_FULL_func< float >
C
HSV_to_RGB_func
C
HSV_to_RGB_func< float >
C
HSV_to_RGBA_FULL_func
C
HSV_to_RGBA_FULL_func< float >
C
HSV_to_RGBA_func
C
HSV_to_RGBA_func< float >
C
hypot_func
C
hypot_func< double >
C
hypot_func< float >
C
hypot_func< schar >
C
hypot_func< short >
C
hypot_func< uchar >
C
hypot_func< uint >
C
hypot_func< ushort >
C
identity
C
Int2Type
C
IntegerAreaInterPtr
C
IntegerAreaInterPtrSz
C
IntegralBody
▼C
IsBinaryFunction
C
IsPowerOf2
▼C
IsUnaryFunction
C
Lab4_to_BGR_func
C
Lab4_to_BGRA_func
C
Lab4_to_LBGR_func
C
Lab4_to_LBGRA_func
C
Lab4_to_LRGB_func
C
Lab4_to_LRGBA_func
C
Lab4_to_RGB_func
C
Lab4_to_RGBA_func
C
Lab_to_BGR_func
C
Lab_to_BGRA_func
C
Lab_to_LBGR_func
C
Lab_to_LBGRA_func
C
Lab_to_LRGB_func
C
Lab_to_LRGBA_func
C
Lab_to_RGB_func
C
Lab_to_RGBA_func
C
LaplacianPtr
C
LaplacianPtr< 1, SrcPtr >
C
LaplacianPtr< 3, SrcPtr >
C
LaplacianPtrSz
C
LargerType
C
LBGR_to_Lab4_func
C
LBGR_to_Lab_func
C
LBGR_to_Luv4_func
C
LBGR_to_Luv_func
C
LBGRA_to_Lab4_func
C
LBGRA_to_Lab_func
C
LBGRA_to_Luv4_func
C
LBGRA_to_Luv_func
C
less
C
less_equal
C
LinearInterPtr
C
LinearInterPtrSz
C
log10_func
C
log10_func< double >
C
log10_func< float >
C
log10_func< schar >
C
log10_func< short >
C
log10_func< uchar >
C
log10_func< uint >
C
log10_func< ushort >
C
Log2
C
Log2< N, 0, COUNT >
C
log2_func
C
log2_func< double >
C
log2_func< float >
C
log2_func< schar >
C
log2_func< short >
C
log2_func< uchar >
C
log2_func< uint >
C
log2_func< ushort >
C
log_func
C
log_func< double >
C
log_func< float >
C
log_func< schar >
C
log_func< short >
C
log_func< uchar >
C
log_func< uint >
C
log_func< ushort >
C
logical_and
C
logical_not
C
logical_or
C
LRGB_to_Lab4_func
C
LRGB_to_Lab_func
C
LRGB_to_Luv4_func
C
LRGB_to_Luv_func
C
LRGBA_to_Lab4_func
C
LRGBA_to_Lab_func
C
LRGBA_to_Luv4_func
C
LRGBA_to_Luv_func
C
LutPtr
C
LutPtrSz
C
Luv4_to_BGR_func
C
Luv4_to_BGRA_func
C
Luv4_to_LBGR_func
C
Luv4_to_LBGRA_func
C
Luv4_to_LRGB_func
C
Luv4_to_LRGBA_func
C
Luv4_to_RGB_func
C
Luv4_to_RGBA_func
C
Luv_to_BGR_func
C
Luv_to_BGRA_func
C
Luv_to_LBGR_func
C
Luv_to_LBGRA_func
C
Luv_to_LRGB_func
C
Luv_to_LRGBA_func
C
Luv_to_RGB_func
C
Luv_to_RGBA_func
C
magnitude_func
C
magnitude_sqr_func
C
MakeVec
C
MakeVec< bool, 1 >
C
MakeVec< bool, 2 >
C
MakeVec< bool, 3 >
C
MakeVec< bool, 4 >
C
MakeVec< double, 1 >
C
MakeVec< double, 2 >
C
MakeVec< double, 3 >
C
MakeVec< double, 4 >
C
MakeVec< float, 1 >
C
MakeVec< float, 2 >
C
MakeVec< float, 3 >
C
MakeVec< float, 4 >
C
MakeVec< schar, 1 >
C
MakeVec< schar, 2 >
C
MakeVec< schar, 3 >
C
MakeVec< schar, 4 >
C
MakeVec< short, 1 >
C
MakeVec< short, 2 >
C
MakeVec< short, 3 >
C
MakeVec< short, 4 >
C
MakeVec< uchar, 1 >
C
MakeVec< uchar, 2 >
C
MakeVec< uchar, 3 >
C
MakeVec< uchar, 4 >
C
MakeVec< uint, 1 >
C
MakeVec< uint, 2 >
C
MakeVec< uint, 3 >
C
MakeVec< uint, 4 >
C
MakeVec< ushort, 1 >
C
MakeVec< ushort, 2 >
C
MakeVec< ushort, 3 >
C
MakeVec< ushort, 4 >
▼C
Max
C
rebind
C
maximum
C
maximum< double >
C
maximum< float >
C
maximum< schar >
C
maximum< short >
C
maximum< uchar >
C
maximum< uint >
C
maximum< ushort >
▼C
Min
C
rebind
C
minimum
C
minimum< double >
C
minimum< float >
C
minimum< schar >
C
minimum< short >
C
minimum< uchar >
C
minimum< uint >
C
minimum< ushort >
C
minus
C
modulus
C
multiplies
C
NearestInterPtr
C
NearestInterPtrSz
C
negate
C
NormHamming
C
NormL1
C
NormL1< float >
C
NormL2
C
not_equal_to
C
NullType
C
numeric_limits
C
numeric_limits< bool >
C
numeric_limits< double >
C
numeric_limits< float >
C
numeric_limits< schar >
C
numeric_limits< short >
C
numeric_limits< uchar >
C
numeric_limits< uint >
C
numeric_limits< ushort >
C
PerspectiveMapPtr
C
PerspectiveMapPtrSz
C
plus
C
pow_func
C
pow_func< double >
C
project1st
C
project2nd
C
PtrTraits
C
PtrTraits< AffineMapPtrSz >
C
PtrTraits< BinaryTransformPtrSz< Src1Ptr, Src2Ptr, Op > >
C
PtrTraits< CommonAreaInterPtrSz< SrcPtr > >
C
PtrTraits< ConstantPtrSz< T > >
C
PtrTraits< CubicInterPtrSz< SrcPtr > >
C
PtrTraits< DerivXPtrSz< SrcPtr > >
C
PtrTraits< DerivYPtrSz< SrcPtr > >
C
PtrTraits< Expr< Body > >
C
PtrTraits< GlobPtrSz< T > >
C
PtrTraits< GpuMat_< T > >
C
PtrTraits< IntegerAreaInterPtrSz< SrcPtr > >
C
PtrTraits< LaplacianPtrSz< ksize, SrcPtr > >
C
PtrTraits< LinearInterPtrSz< SrcPtr > >
C
PtrTraits< LutPtrSz< SrcPtr, TablePtr > >
C
PtrTraits< NearestInterPtrSz< SrcPtr > >
C
PtrTraits< PerspectiveMapPtrSz >
C
PtrTraits< RemapPtr1Sz< SrcPtr, MapPtr > >
C
PtrTraits< RemapPtr2Sz< SrcPtr, MapXPtr, MapYPtr > >
C
PtrTraits< ResizePtrSz< SrcPtr > >
C
PtrTraits< ScharrXPtrSz< SrcPtr > >
C
PtrTraits< ScharrYPtrSz< SrcPtr > >
C
PtrTraits< SingleMaskChannelsSz< MaskPtr > >
C
PtrTraits< SobelXPtrSz< SrcPtr > >
C
PtrTraits< SobelYPtrSz< SrcPtr > >
C
PtrTraits< Texture< T > >
C
PtrTraits< UnaryTransformPtrSz< SrcPtr, Op > >
C
PtrTraits< ZipPtrSz< PtrTuple > >
C
PtrTraitsBase
C
PyrDownBody
C
PyrUpBody
C
ReduceToColumnBody
C
ReduceToRowBody
C
RemapPtr1
C
RemapPtr1Sz
C
RemapPtr2
C
RemapPtr2Sz
C
ResizePtr
C
ResizePtrSz
C
RGB_to_GRAY_func
C
RGB_to_HLS4_FULL_func
C
RGB_to_HLS4_FULL_func< float >
C
RGB_to_HLS4_func
C
RGB_to_HLS4_func< float >
C
RGB_to_HLS_FULL_func
C
RGB_to_HLS_FULL_func< float >
C
RGB_to_HLS_func
C
RGB_to_HLS_func< float >
C
RGB_to_HSV4_FULL_func
C
RGB_to_HSV4_FULL_func< float >
C
RGB_to_HSV4_func
C
RGB_to_HSV4_func< float >
C
RGB_to_HSV_FULL_func
C
RGB_to_HSV_FULL_func< float >
C
RGB_to_HSV_func
C
RGB_to_HSV_func< float >
C
RGB_to_Lab4_func
C
RGB_to_Lab_func
C
RGB_to_Luv4_func
C
RGB_to_Luv_func
C
RGB_to_XYZ4_func
C
RGB_to_XYZ_func
C
RGB_to_YCrCb4_func
C
RGB_to_YCrCb_func
C
RGB_to_YUV4_func
C
RGB_to_YUV_func
C
RGBA_to_GRAY_func
C
RGBA_to_HLS4_FULL_func
C
RGBA_to_HLS4_FULL_func< float >
C
RGBA_to_HLS4_func
C
RGBA_to_HLS4_func< float >
C
RGBA_to_HLS_FULL_func
C
RGBA_to_HLS_FULL_func< float >
C
RGBA_to_HLS_func
C
RGBA_to_HLS_func< float >
C
RGBA_to_HSV4_FULL_func
C
RGBA_to_HSV4_FULL_func< float >
C
RGBA_to_HSV4_func
C
RGBA_to_HSV4_func< float >
C
RGBA_to_HSV_FULL_func
C
RGBA_to_HSV_FULL_func< float >
C
RGBA_to_HSV_func
C
RGBA_to_HSV_func< float >
C
RGBA_to_Lab4_func
C
RGBA_to_Lab_func
C
RGBA_to_Luv4_func
C
RGBA_to_Luv_func
C
RGBA_to_XYZ4_func
C
RGBA_to_XYZ_func
C
RGBA_to_YCrCb4_func
C
RGBA_to_YCrCb_func
C
RGBA_to_YUV4_func
C
RGBA_to_YUV_func
C
saturate_cast_fp16_func
C
saturate_cast_fp16_func< float, short >
C
saturate_cast_fp16_func< short, float >
C
saturate_cast_func
C
ScharrXPtr
C
ScharrXPtrSz
C
ScharrYPtr
C
ScharrYPtrSz
C
SelectIf
C
SelectIf< false, ThenType, ElseType >
C
sin_func
C
sin_func< double >
C
sin_func< float >
C
sin_func< schar >
C
sin_func< short >
C
sin_func< uchar >
C
sin_func< uint >
C
sin_func< ushort >
C
SingleMaskChannels
C
SingleMaskChannelsSz
C
sinh_func
C
sinh_func< double >
C
sinh_func< float >
C
sinh_func< schar >
C
sinh_func< short >
C
sinh_func< uchar >
C
sinh_func< uint >
C
sinh_func< ushort >
C
SobelXPtr
C
SobelXPtrSz
C
SobelYPtr
C
SobelYPtrSz
C
sqr_func
C
sqrt_func
C
sqrt_func< double >
C
sqrt_func< float >
C
sqrt_func< schar >
C
sqrt_func< short >
C
sqrt_func< uchar >
C
sqrt_func< uint >
C
sqrt_func< ushort >
▼C
Sum
C
rebind
C
SumExprBody
C
tan_func
C
tan_func< double >
C
tan_func< float >
C
tan_func< schar >
C
tan_func< short >
C
tan_func< uchar >
C
tan_func< uint >
C
tan_func< ushort >
C
tanh_func
C
tanh_func< double >
C
tanh_func< float >
C
tanh_func< schar >
C
tanh_func< short >
C
tanh_func< uchar >
C
tanh_func< uint >
C
tanh_func< ushort >
C
Texture
C
TexturePtr
C
ThreshBinaryFunc
C
ThreshBinaryInvFunc
C
ThreshToZeroFunc
C
ThreshToZeroInvFunc
C
ThreshTruncFunc
C
TransposeBody
C
TupleTraits
C
TupleTraits< tuple< P0, P1, P2, P3, P4, P5, P6, P7, P8, P9 > >
C
TypesEquals
C
TypesEquals< A, A >
C
TypeTraits
C
unary_function
C
UnaryNegate
C
UnaryTransformPtr
C
UnaryTransformPtrSz
C
UnaryTupleAdapter
C
VecTraits
C
VecTraits< char1 >
C
VecTraits< char2 >
C
VecTraits< char3 >
C
VecTraits< char4 >
C
VecTraits< double >
C
VecTraits< double1 >
C
VecTraits< double2 >
C
VecTraits< double3 >
C
VecTraits< double4 >
C
VecTraits< float >
C
VecTraits< float1 >
C
VecTraits< float2 >
C
VecTraits< float3 >
C
VecTraits< float4 >
C
VecTraits< int1 >
C
VecTraits< int2 >
C
VecTraits< int3 >
C
VecTraits< int4 >
C
VecTraits< schar >
C
VecTraits< short >
C
VecTraits< short1 >
C
VecTraits< short2 >
C
VecTraits< short3 >
C
VecTraits< short4 >
C
VecTraits< uchar >
C
VecTraits< uchar1 >
C
VecTraits< uchar2 >
C
VecTraits< uchar3 >
C
VecTraits< uchar4 >
C
VecTraits< uint >
C
VecTraits< uint1 >
C
VecTraits< uint2 >
C
VecTraits< uint3 >
C
VecTraits< uint4 >
C
VecTraits< ushort >
C
VecTraits< ushort1 >
C
VecTraits< ushort2 >
C
VecTraits< ushort3 >
C
VecTraits< ushort4 >
C
Warp
C
WithOutMask
C
XYZ4_to_BGR_func
C
XYZ4_to_BGRA_func
C
XYZ4_to_RGB_func
C
XYZ4_to_RGBA_func
C
XYZ_to_BGR_func
C
XYZ_to_BGRA_func
C
XYZ_to_RGB_func
C
XYZ_to_RGBA_func
C
YCrCb4_to_BGR_func
C
YCrCb4_to_BGRA_func
C
YCrCb4_to_RGB_func
C
YCrCb4_to_RGBA_func
C
YCrCb_to_BGR_func
C
YCrCb_to_BGRA_func
C
YCrCb_to_RGB_func
C
YCrCb_to_RGBA_func
C
YUV4_to_BGR_func
C
YUV4_to_BGRA_func
C
YUV4_to_RGB_func
C
YUV4_to_RGBA_func
C
YUV_to_BGR_func
C
YUV_to_BGRA_func
C
YUV_to_RGB_func
C
YUV_to_RGBA_func
C
ZipPtr
C
ZipPtr< tuple< Ptr0, Ptr1 > >
C
ZipPtr< tuple< Ptr0, Ptr1, Ptr2 > >
C
ZipPtr< tuple< Ptr0, Ptr1, Ptr2, Ptr3 > >
C
ZipPtrSz
C
AR_hmdb
C
AR_hmdbObj
C
AR_sports
C
AR_sportsObj
C
cameraParam
C
cameraPos
C
Dataset
C
FR_adience
C
FR_adienceObj
C
FR_lfw
C
FR_lfwObj
C
GR_chalearn
C
GR_chalearnObj
C
GR_skig
C
GR_skigObj
C
groundTruth
C
HPE_humaneva
C
HPE_humanevaObj
C
HPE_parse
C
HPE_parseObj
C
IR_affine
C
IR_affineObj
C
IR_robot
C
IR_robotObj
C
IS_bsds
C
IS_bsdsObj
C
IS_weizmann
C
IS_weizmannObj
C
join
C
MSM_epfl
C
MSM_epflObj
C
MSM_middlebury
C
MSM_middleburyObj
C
Object
C
OR_imagenet
C
OR_imagenetObj
C
OR_mnist
C
OR_mnistObj
C
OR_pascal
C
OR_pascalObj
C
OR_sun
C
OR_sunObj
C
PascalObj
C
PascalPart
C
PD_caltech
C
PD_caltechObj
C
PD_inria
C
PD_inriaObj
C
pose
C
skeleton
C
SLAM_kitti
C
SLAM_kittiObj
C
SLAM_tumindoor
C
SLAM_tumindoorObj
C
tag
C
TR_chars
C
TR_charsObj
C
TR_icdar
C
TR_icdarObj
C
TR_svt
C
TR_svtObj
C
TRACK_alov
C
TRACK_alovObj
C
TRACK_vot
C
TRACK_votObj
C
word
C
AffineBasedEstimator
Affine transformation based estimator
C
AffineBestOf2NearestMatcher
Features matcher similar to
cv::detail::BestOf2NearestMatcher
which finds two best matches for each feature and leaves the best one only if the ratio between descriptor distances is greater than the threshold match_conf
C
AffineWarper
Affine warper that uses rotations and translations
C
AKAZEFeaturesFinder
AKAZE
features finder. :
C
BestOf2NearestMatcher
Features matcher which finds two best matches for each feature and leaves the best one only if the ratio between descriptor distances is greater than the threshold match_conf
C
BestOf2NearestRangeMatcher
C
Blender
Base class for all blenders
C
BlocksGainCompensator
Exposure compensator which tries to remove exposure related artifacts by adjusting image block intensities, see
[189]
for details
C
BundleAdjusterAffine
Bundle adjuster that expects affine transformation represented in homogeneous coordinates in R for each camera param. Implements camera parameters refinement algorithm which minimizes sum of the reprojection error squares
C
BundleAdjusterAffinePartial
Bundle adjuster that expects affine transformation with 4 DOF represented in homogeneous coordinates in R for each camera param. Implements camera parameters refinement algorithm which minimizes sum of the reprojection error squares
C
BundleAdjusterBase
Base class for all camera parameters refinement methods
C
BundleAdjusterRay
Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature. :
C
BundleAdjusterReproj
Implementation of the camera parameters refinement algorithm which minimizes sum of the reprojection error squares
C
CameraParams
Describes camera parameters
C
CompressedRectilinearPortraitProjector
C
CompressedRectilinearPortraitWarper
C
CompressedRectilinearProjector
C
CompressedRectilinearWarper
C
CylindricalPortraitProjector
C
CylindricalPortraitWarper
C
CylindricalProjector
C
CylindricalWarper
Warper that maps an image onto the x*x + z*z = 1 cylinder
C
CylindricalWarperGpu
C
DisjointSets
C
DpSeamFinder
C
Estimator
Rotation estimator base class
C
ExposureCompensator
Base class for all exposure compensators
C
FeatherBlender
Simple blender which mixes images at its borders
C
FeaturesFinder
Feature finders base class
C
FeaturesMatcher
Feature matchers base class
C
FisheyeProjector
C
FisheyeWarper
C
GainCompensator
Exposure compensator which tries to remove exposure related artifacts by adjusting image intensities, see
[25]
and
[211]
for details
C
Graph
C
GraphCutSeamFinder
Minimum graph cut-based seam estimator. See details in
[101]
C
GraphCutSeamFinderBase
Base class for all minimum graph-cut-based seam estimators
C
GraphEdge
C
HomographyBasedEstimator
Homography based rotation estimator
C
ImageFeatures
Structure containing image keypoints and descriptors
C
MatchesInfo
Structure containing information about matches between two images
C
MercatorProjector
C
MercatorWarper
C
MultiBandBlender
Blender
which uses multi-band blending algorithm (see
[28]
)
C
NoBundleAdjuster
Stub bundle adjuster that does nothing
C
NoExposureCompensator
Stub exposure compensator which does nothing
C
NoSeamFinder
Stub seam estimator which does nothing
C
OrbFeaturesFinder
ORB
features finder. :
C
PairwiseSeamFinder
Base class for all pairwise seam estimators
C
PaniniPortraitProjector
C
PaniniPortraitWarper
C
PaniniProjector
C
PaniniWarper
C
PlanePortraitProjector
C
PlanePortraitWarper
C
PlaneProjector
C
PlaneWarper
Warper that maps an image onto the z = 1 plane
C
PlaneWarperGpu
C
ProjectorBase
Base class for warping logic implementation
C
RotationWarper
Rotation-only model image warper interface
C
RotationWarperBase
Base class for rotation-based warper using a detail::ProjectorBase_ derived class
C
SeamFinder
Base class for a seam estimator
C
SphericalPortraitProjector
C
SphericalPortraitWarper
C
SphericalProjector
C
SphericalWarper
Warper that maps an image onto the unit sphere located at the origin
C
SphericalWarperGpu
C
StereographicProjector
C
StereographicWarper
C
SurfFeaturesFinder
SURF features finder
C
Timelapser
C
TimelapserCrop
C
TransverseMercatorProjector
C
TransverseMercatorWarper
C
VoronoiSeamFinder
Voronoi diagram-based seam estimator
▼N
details
C
_LayerStaticRegisterer
C
_Range
C
AbsLayer
C
ActivationLayer
C
BackendNode
Derivatives of this class encapsulates functions of certain backends
C
BackendWrapper
Derivatives of this class wraps
cv::Mat
for different backends and targets
C
BaseConvolutionLayer
C
BatchNormLayer
C
BlankLayer
C
BNLLLayer
C
ChannelsPReLULayer
C
ConcatLayer
C
ConvolutionLayer
C
CropAndResizeLayer
C
CropLayer
C
DeconvolutionLayer
C
DetectionOutputLayer
C
Dict
This class implements name-value dictionary, values are instances of
DictValue
C
DictValue
This struct stores the scalar value (or array) of one of the following type: double,
cv::String
or int64
C
EltwiseLayer
C
ELULayer
C
FlattenLayer
C
InnerProductLayer
C
InterpLayer
Bilinear resize layer from
https://github.com/cdmh/deeplab-public
C
Layer
This interface class allows to build new Layers - are building blocks of networks
C
LayerFactory
Layer factory allows to create instances of registered layers
C
LayerParams
This class provides all data needed to initialize layer
C
LRNLayer
C
LSTMLayer
LSTM recurrent layer
C
MaxUnpoolLayer
C
MVNLayer
C
Net
This class allows to create and manipulate comprehensive artificial neural networks
C
NormalizeBBoxLayer
Lp - normalization layer
C
PaddingLayer
Adds extra values for specific axes
C
PermuteLayer
C
PoolingLayer
C
PowerLayer
C
PriorBoxLayer
C
ProposalLayer
C
RegionLayer
C
ReLU6Layer
C
ReLULayer
C
ReorgLayer
C
ReshapeLayer
C
ResizeLayer
Resize input 4-dimensional blob by nearest neighbor or bilinear strategy
C
RNNLayer
Classical recurrent layer
C
ScaleLayer
C
ShiftLayer
C
ShuffleChannelLayer
C
SigmoidLayer
C
SliceLayer
C
SoftmaxLayer
C
SplitLayer
C
TanHLayer
C
InferBbox
A class to post process model predictions
C
object
Structure to hold the details pertaining to a single bounding box
▼C
DPMDetector
This is a C++ abstract class, it provides external user API to work with DPM
C
ObjectDetection
C
BasicFaceRecognizer
C
BIF
C
CParams
C
EigenFaceRecognizer
C
Facemark
Abstract base class for all facemark models
▼C
FacemarkAAM
C
Config
Optional parameter for fitting process
C
Data
Data
container for the facemark::getData function
▼C
Model
The model of AAM
Algorithm
C
Texture
C
Params
▼C
FacemarkKazemi
C
Params
▼C
FacemarkLBF
C
BBox
C
Params
C
FacemarkTrain
Abstract base class for trainable facemark models
C
FaceRecognizer
Abstract base class for all face recognition models
C
FisherFaceRecognizer
C
LBPHFaceRecognizer
C
MACE
Minimum Average Correlation Energy Filter useful for authentication with (cancellable) biometrical features. (does not need many positives to train (10-50), and no negatives at all, also robust to noise/salting)
C
PredictCollector
Abstract base class for all strategies of prediction result handling
▼C
StandardCollector
Default predict collector
C
PredictResult
C
AutotunedIndexParams
C
CompositeIndexParams
C
CvType
C
CvType< char >
C
CvType< double >
C
CvType< float >
C
CvType< short >
C
CvType< unsigned char >
C
CvType< unsigned short >
C
GenericIndex
The FLANN nearest neighbor index class. This class is templated with the type of elements for which the index is built
C
HierarchicalClusteringIndexParams
C
Index
C
Index_
C
IndexParams
C
KDTreeIndexParams
C
KMeansIndexParams
C
LinearIndexParams
C
LshIndexParams
C
SavedIndexParams
C
SearchParams
C
FreeType2
C
DCT2D
C
DFT1D
C
DFT2D
C
HDF5
Hierarchical Data Format version 5 interface
C
HfsSegment
C
AverageHash
Computes average hash value of the input image
C
BlockMeanHash
Image hash based on block mean
C
ColorMomentHash
Image hash based on color moments
C
ImgHashBase
The base class for image hash algorithms
C
MarrHildrethHash
Marr-Hildreth Operator Based Hash, slowest but more discriminative
C
PHash
PHash
C
RadialVarianceHash
Image hash based on Radon transform
▼N
instr
C
NodeData
C
NodeDataTls
▼N
line_descriptor
▼C
BinaryDescriptor
Class implements both functionalities for detection of lines and computation of their binary descriptor
C
Params
List of
BinaryDescriptor
parameters:
C
BinaryDescriptorMatcher
Furnishes all functionalities for querying a dataset provided by user or internal to class (that user must, anyway, populate) on the model of
Descriptor Matchers
C
DrawLinesMatchesFlags
C
KeyLine
A class to represent a line
C
LSDDetector
▼N
linemod
C
ColorGradient
Modality
that computes quantized gradient orientations from a color image
C
DepthNormal
Modality
that computes quantized surface normals from a dense depth map
C
Detector
Object detector using the LINE template matching algorithm with any set of modalities
C
Feature
Discriminant feature described by its location and label
C
Match
Represents a successful template match
C
Modality
Interface for modalities that plug into the LINE template matching representation
▼C
QuantizedPyramid
Represents a modality operating over an image pyramid
C
Candidate
Candidate
feature with a score
C
Template
▼N
ml
C
ANN_MLP
Artificial Neural Networks - Multi-Layer Perceptrons
C
ANN_MLP_ANNEAL
Artificial Neural Networks - Multi-Layer Perceptrons
C
Boost
Boosted tree classifier derived from
DTrees
▼C
DTrees
The class represents a single decision tree or a collection of decision trees
C
Node
The class represents a decision tree node
C
Split
The class represents split in a decision tree
The class implements the Expectation Maximization algorithm
C
KNearest
The class implements K-Nearest Neighbors model
C
LogisticRegression
Implements Logistic Regression classifier
C
NormalBayesClassifier
Bayes classifier for normally distributed data
C
ParamGrid
The structure represents the logarithmic grid range of statmodel parameters
C
RTrees
The class implements the random forest predictor
C
SimulatedAnnealingSolverSystem
This class declares example interface for system state used in simulated annealing optimization algorithm
C
StatModel
Base class for statistical models in OpenCV ML
▼C
SVM
Support Vector Machines
C
Kernel
C
SVMSGD
Stochastic Gradient Descent
SVM
classifier
C
TrainData
Class encapsulating training data
▼N
multicalib
▼C
MultiCameraCalibration
Class for multiple camera calibration that supports pinhole camera and omnidirection camera. For omnidirectional camera model, please refer to
omnidir.hpp
in ccalib module. It first calibrate each camera individually, then a bundle adjustment like optimization is applied to refine extrinsic parameters. So far, it only support "random" pattern for calibration, see randomPattern.hpp in ccalib module for details. Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp means that they are the same pattern that are photographed. cameraIdx should start from 0
C
edge
C
vertex
▼N
ocl
C
Context
C
Device
C
Image2D
C
Kernel
C
KernelArg
C
Platform
C
PlatformInfo
C
Program
C
ProgramSource
C
Queue
C
Timer
▼N
ogl
C
Arrays
Wrapper for OpenGL Client-Side Vertex arrays
C
Buffer
Smart pointer for OpenGL buffer object with reference counting
C
Texture2D
Smart pointer for OpenGL 2D texture memory with reference counting
▼N
omnidir
▼N
optflow
C
DISOpticalFlow
DIS optical flow algorithm
C
GPCDetails
C
GPCForest
C
GPCMatchingParams
Class encapsulating matching parameters
C
GPCPatchDescriptor
C
GPCPatchSample
C
GPCTrainingParams
Class encapsulating training parameters
C
GPCTrainingSamples
Class encapsulating training samples
▼C
GPCTree
Class for individual tree
C
Node
C
OpticalFlowPCAFlow
PCAFlow algorithm
C
PCAPrior
This class can be used for imposing a learned prior on the resulting optical flow. Solution will be regularized according to this prior. You need to generate appropriate prior file with "learn_prior.py" script beforehand
C
VariationalRefinement
Variational optical flow refinement
▼N
ovis
C
WindowScene
▼N
phase_unwrapping
▼C
HistogramPhaseUnwrapping
Class implementing two-dimensional phase unwrapping based on
[104]
This algorithm belongs to the quality-guided phase unwrapping methods. First, it computes a reliability map from second differences between a pixel and its eight neighbours. Reliability values lie between 0 and 16*pi*pi. Then, this reliability map is used to compute the reliabilities of "edges". An edge is an entity defined by two pixels that are connected horizontally or vertically. Its reliability is found by adding the the reliabilities of the two pixels connected through it. Edges are sorted in a histogram based on their reliability values. This histogram is then used to unwrap pixels, starting from the highest quality pixel
C
Params
Parameters of phaseUnwrapping constructor
C
PhaseUnwrapping
Abstract base class for phase unwrapping
▼N
plot
C
Plot2d
▼N
ppf_match_3d
C
ICP
This class implements a very efficient and robust variant of the iterative closest point (
ICP
) algorithm. The task is to register a 3D model (or point cloud) against a set of noisy target data. The variants are put together by myself after certain tests. The task is to be able to match partial, noisy point clouds in cluttered scenes, quickly. You will find that my emphasis is on the performance, while retaining the accuracy. This implementation is based on Tolga Birdal's MATLAB implementation in here:
http://www.mathworks.com/matlabcentral/fileexchange/47152-icp-registration-using-efficient-variants-and-multi-resolution-scheme
The main contributions come from:
C
Pose3D
Class, allowing the storage of a pose. The data structure stores both the quaternions and the matrix forms. It supports IO functionality together with various helper methods to work with poses
C
PoseCluster3D
When multiple poses (see
Pose3D
) are grouped together (contribute to the same transformation) pose clusters occur. This class is a general container for such groups of poses. It is possible to store, load and perform IO on these poses
C
PPF3DDetector
Class, allowing the load and matching 3D models. Typical Use:
▼N
randpattern
C
RandomPatternCornerFinder
Class for finding features points and corresponding 3D in world coordinate of a "random" pattern, which can be to be used in calibration. It is useful when pattern is partly occluded or only a part of pattern can be observed in multiple cameras calibration. The pattern can be generated by
RandomPatternGenerator
class described in this file
C
RandomPatternGenerator
▼N
reg
C
Map
Base class for modelling a
Map
between two images
C
MapAffine
C
Mapper
Base class for modelling an algorithm for calculating a map
C
MapperGradAffine
C
MapperGradEuclid
C
MapperGradProj
C
MapperGradShift
C
MapperGradSimilar
C
MapperPyramid
C
MapProjec
C
MapShift
C
MapTypeCaster
▼N
rgbd
C
DepthCleaner
C
ICPOdometry
C
Odometry
C
OdometryFrame
C
RgbdFrame
C
RgbdICPOdometry
C
RgbdNormals
C
RgbdOdometry
C
RgbdPlane
▼N
saliency
C
MotionSaliency
C
MotionSaliencyBinWangApr2014
Fast Self-tuning Background Subtraction
Algorithm
from
[200]
C
Objectness
C
ObjectnessBING
Objectness
algorithms based on [3] [3] Cheng, Ming-Ming, et al. "BING: Binarized normed gradients for objectness estimation at 300fps." IEEE CVPR. 2014
C
Saliency
C
StaticSaliency
C
StaticSaliencyFineGrained
Fine Grained
Saliency
approach from
[134]
C
StaticSaliencySpectralResidual
Spectral Residual approach from
[85]
▼N
sfm
C
BaseSFM
Base class
BaseSFM
declares a common API that would be used in a typical scene reconstruction scenario
C
libmv_CameraIntrinsicsOptions
Data structure describing the camera model and its parameters
C
libmv_ReconstructionOptions
Data structure describing the reconstruction options
C
SFMLibmvEuclideanReconstruction
SFMLibmvEuclideanReconstruction
class provides an interface with the Libmv Structure From Motion pipeline
▼N
stereo
C
CensusKernel
A kernel in which a pixel is compared with the center of the window
C
CombinedDescriptor
C
Matching
C
MCTKernel
C
MeanKernelIntegralImage
C
ModifiedCsCensus
C
MVKernel
C
StarKernelCensus
Implementation for the star kernel descriptor
C
StereoBinaryBM
Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige
C
StereoBinarySGBM
The class implements the modified H. Hirschmuller algorithm
[84]
that differs from the original one as follows:
C
StereoMatcher
Filters off small noise blobs (speckles) in the disparity map
C
SymetricCensus
Paralel implementation of the center symetric census
▼N
structured_light
▼C
GrayCodePattern
Class implementing the Gray-code pattern, based on
[81]
C
Params
Parameters of
StructuredLightPattern
constructor
▼C
SinusoidalPattern
Class implementing Fourier transform profilometry (FTP) , phase-shifting profilometry (PSP) and Fourier-assisted phase-shifting profilometry (FAPS) based on
[36]
C
Params
Parameters of
SinusoidalPattern
constructor
C
StructuredLightPattern
Abstract base class for generating and decoding structured light patterns
▼N
superres
C
BroxOpticalFlow
C
DenseOpticalFlowExt
C
DualTVL1OpticalFlow
C
FarnebackOpticalFlow
C
FrameSource
C
PyrLKOpticalFlow
C
SuperResolution
Base class for Super Resolution algorithms
▼N
text
C
BaseOCR
▼C
ERFilter
Base class for 1st and 2nd stages of Neumann and Matas scene text detection algorithm
[138]
. :
C
Callback
Callback
with the classifier is made a class
C
ERStat
The
ERStat
structure represents a class-specific Extremal Region (ER)
▼C
OCRBeamSearchDecoder
OCRBeamSearchDecoder
class provides an interface for OCR using Beam Search algorithm
C
ClassifierCallback
Callback with the character classifier is made a class
▼C
OCRHMMDecoder
OCRHMMDecoder
class provides an interface for OCR using Hidden Markov Models
C
ClassifierCallback
Callback with the character classifier is made a class
C
OCRHolisticWordRecognizer
OCRHolisticWordRecognizer
class provides the functionallity of segmented wordspotting. Given a predefined vocabulary , a DictNet is employed to select the most probable word given an input image
C
OCRTesseract
OCRTesseract
class provides an interface with the tesseract-ocr API (v3.02.02) in C++
C
TextDetector
An abstract class providing interface for text detection algorithms
C
TextDetectorCNN
TextDetectorCNN
class provides the functionallity of text bounding box detection. This class is representing to find bounding boxes of text words given an input image. This class uses OpenCV dnn module to load pre-trained model described in
[111]
. The original repository with the modified SSD Caffe version:
https://github.com/MhLiao/TextBoxes
. Model can be downloaded from
DropBox
. Modified .prototxt file with the model description can be found in
opencv_contrib/modules/text/samples/textbox.prototxt
▼N
tracking
C
AugmentedUnscentedKalmanFilterParams
Augmented Unscented Kalman filter parameters. The class for initialization parameters of Augmented Unscented Kalman filter
C
UkfSystemModel
Model of dynamical system for Unscented Kalman filter. The interface for dynamical system model. It contains functions for computing the next state and the measurement. It must be inherited for using UKF
C
UnscentedKalmanFilter
The interface for Unscented Kalman filter and Augmented Unscented Kalman filter
C
UnscentedKalmanFilterParams
Unscented Kalman filter parameters. The class for initialization parameters of Unscented Kalman filter
▼N
utils
▼N
logging
C
lock_guard
A simple scoped lock (RAII-style locking for exclusive/write access)
C
optional_lock_guard
An optional simple scoped lock (RAII-style locking for exclusive/write access)
C
optional_shared_lock_guard
An optional shared scoped lock (RAII-style locking for shared/reader access)
C
shared_lock_guard
A shared scoped lock (RAII-style locking for shared/reader access)
▼N
va_intel
▼N
videostab
C
ColorAverageInpainter
C
ColorInpainter
C
ConsistentMosaicInpainter
C
DeblurerBase
C
FastMarchingMethod
Describes the Fast Marching Method implementation
C
FromFileMotionReader
C
GaussianMotionFilter
C
IDenseOptFlowEstimator
C
IFrameSource
C
ILog
C
ImageMotionEstimatorBase
Base class for global 2D motion estimation methods which take frames as input
C
IMotionStabilizer
C
InpainterBase
C
InpaintingPipeline
C
IOutlierRejector
C
ISparseOptFlowEstimator
C
KeypointBasedMotionEstimator
Describes a global 2D motion estimation method which uses keypoints detection and optical flow for matching
C
LogToStdout
C
LpMotionStabilizer
C
MoreAccurateMotionWobbleSuppressor
C
MoreAccurateMotionWobbleSuppressorBase
C
MotionEstimatorBase
Base class for all global motion estimation methods
C
MotionEstimatorL1
Describes a global 2D motion estimation method which minimizes
L1
error
C
MotionEstimatorRansacL2
Describes a robust RANSAC-based global 2D motion estimation method which minimizes
L2
error
C
MotionFilterBase
C
MotionInpainter
C
MotionStabilizationPipeline
C
NullDeblurer
C
NullFrameSource
C
NullInpainter
C
NullLog
C
NullOutlierRejector
C
NullWobbleSuppressor
C
OnePassStabilizer
C
PyrLkOptFlowEstimatorBase
C
RansacParams
Describes RANSAC method parameters
C
SparsePyrLkOptFlowEstimator
C
StabilizerBase
C
ToFileMotionWriter
C
TranslationBasedLocalOutlierRejector
C
TwoPassStabilizer
C
VideoFileSource
C
WeightingDeblurer
C
WobbleSuppressorBase
▼N
viz
C
Camera
This class wraps intrinsic parameters of a camera
C
Color
This class represents color in BGR order
C
KeyboardEvent
This class represents a keyboard event
C
Mesh
This class wraps mesh attributes, and it can load a mesh from a ply file. :
C
MouseEvent
This class represents a mouse event
C
Viz3d
3D visualizer window. This class is implicitly shared
C
WArrow
This 3D
Widget
defines an arrow
C
WCameraPosition
This 3D
Widget
represents camera position in a scene by its axes or viewing frustum. :
C
WCircle
This 3D
Widget
defines a circle
C
WCloud
Clouds
C
WCloudCollection
This 3D
Widget
defines a collection of clouds. :
C
WCloudNormals
This 3D
Widget
represents normals of a point cloud. :
C
WCone
This 3D
Widget
defines a cone. :
C
WCoordinateSystem
Compound widgets
C
WCube
This 3D
Widget
defines a cube
C
WCylinder
This 3D
Widget
defines a cylinder. :
C
WGrid
This 3D
Widget
defines a grid. :
C
Widget
Base class of all widgets.
Widget
is implicitly shared
C
Widget2D
Base class of all 2D widgets
C
Widget3D
Base class of all 3D widgets
C
WidgetAccessor
This class is for users who want to develop their own widgets using VTK library API. :
C
WImage3D
This 3D
Widget
represents an image in 3D space. :
C
WImageOverlay
This 2D
Widget
represents an image overlay. :
C
WLine
Simple widgets
C
WMesh
Constructs a
WMesh
C
WPaintedCloud
C
WPlane
This 3D
Widget
defines a finite plane
C
WPolyLine
This 3D
Widget
defines a poly line. :
C
WSphere
This 3D
Widget
defines a sphere. :
C
WText
Text and image widgets
C
WText3D
This 3D
Widget
represents 3D text. The text always faces the camera
C
WTrajectory
Trajectories
C
WTrajectoryFrustums
This 3D
Widget
represents a trajectory. :
C
WTrajectorySpheres
This 3D
Widget
represents a trajectory using spheres and lines
C
WWidgetMerger
This class allows to merge several widgets to single one
▼N
xfeatures2d
C
AffineFeature2D
Class implementing affine adaptation for key points
C
BoostDesc
Class implementing
BoostDesc
(Learning Image Descriptors with Boosting), described in
[176]
and
[177]
C
BriefDescriptorExtractor
Class for computing BRIEF descriptors described in
[29]
C
DAISY
Class implementing
DAISY
descriptor, described in
[183]
C
Elliptic_KeyPoint
Elliptic region around an interest point
C
FREAK
Class implementing the
FREAK
(
Fast Retina Keypoint
) keypoint descriptor, described in
[4]
C
HarrisLaplaceFeatureDetector
Class implementing the Harris-Laplace feature detector as described in
[131]
C
LATCH
C
LUCID
Class implementing the locally uniform comparison image descriptor, described in
[222]
C
MSDDetector
Class implementing the MSD (
Maximal Self-Dissimilarity
) keypoint detector, described in
[184]
C
PCTSignatures
Class implementing PCT (position-color-texture) signature extraction as described in
[100]
. The algorithm is divided to a feature sampler and a clusterizer. Feature sampler produces samples at given set of coordinates. Clusterizer then produces clusters of these samples using k-means algorithm. Resulting set of clusters is the signature of the input image
C
PCTSignaturesSQFD
Class implementing Signature Quadratic Form Distance (SQFD)
C
SIFT
Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (
SIFT
) algorithm by D. Lowe
[118]
C
StarDetector
The class implements the keypoint detector introduced by
[2]
, synonym of
StarDetector
. :
C
SURF
Class for extracting Speeded Up Robust Features from an image
[10]
C
VGG
Class implementing
VGG
(Oxford Visual Geometry Group) descriptor trained end to end using "Descriptor Learning Using Convex Optimisation" (DLCO) aparatus described in
[168]
▼N
ximgproc
▼N
segmentation
C
GraphSegmentation
Graph Based Segmentation
Algorithm
. The class implements the algorithm described in
[54]
C
SelectiveSearchSegmentation
Selective search segmentation algorithm The class implements the algorithm described in
[188]
C
SelectiveSearchSegmentationStrategy
Strategie for the selective search segmentation algorithm The class implements a generic stragery for the algorithm described in
[188]
C
SelectiveSearchSegmentationStrategyColor
Color-based strategy for the selective search segmentation algorithm The class is implemented from the algorithm described in
[188]
C
SelectiveSearchSegmentationStrategyFill
Fill-based strategy for the selective search segmentation algorithm The class is implemented from the algorithm described in
[188]
C
SelectiveSearchSegmentationStrategyMultiple
Regroup multiple strategies for the selective search segmentation algorithm
C
SelectiveSearchSegmentationStrategySize
Size-based strategy for the selective search segmentation algorithm The class is implemented from the algorithm described in
[188]
C
SelectiveSearchSegmentationStrategyTexture
Texture-based strategy for the selective search segmentation algorithm The class is implemented from the algorithm described in
[188]
C
AdaptiveManifoldFilter
Interface for Adaptive Manifold Filter realizations
C
Box
C
ContourFitting
Class for
ContourFitting
algorithms.
ContourFitting
match two contours zaand zb minimizing distance
d(za,zb)=∑(an−sbnej(nα+ϕ))2
where an and bn are Fourier descriptors of za and zb and s is a scaling factor and ϕ is angle rotation and α is starting point factor adjustement
C
DisparityFilter
Main interface for all disparity map filters
C
DisparityWLSFilter
Disparity map filter based on Weighted Least Squares filter (in form of Fast Global Smoother that is a lot faster than traditional Weighted Least Squares filter implementations) and optional use of left-right-consistency-based confidence to refine the results in half-occlusions and uniform areas
C
DTFilter
Interface for realizations of Domain Transform filter
C
EdgeAwareInterpolator
Sparse match interpolation algorithm based on modified locally-weighted affine estimator from
[155]
and Fast Global Smoother as post-processing filter
C
EdgeBoxes
Class implementing
EdgeBoxes
algorithm from
[224]
:
C
FastGlobalSmootherFilter
Interface for implementations of Fast Global Smoother filter
C
FastLineDetector
Class implementing the FLD (Fast Line
Detector
) algorithm described in
[103]
C
GuidedFilter
Interface for realizations of Guided Filter
C
RFFeatureGetter
C
RidgeDetectionFilter
Applies Ridge Detection Filter to an input image. Implements Ridge detection similar to the one in
Mathematica
using the eigen values from the Hessian Matrix of the input image using Sobel Derivatives. Additional refinement can be done using Skeletonization and Binarization
C
SparseMatchInterpolator
Main interface for all filters, that take sparse matches as an input and produce a dense per-pixel matching (optical flow) as an output
C
StructuredEdgeDetection
Class implementing edge detection algorithm from
[43]
:
C
SuperpixelLSC
Class implementing the LSC (Linear Spectral Clustering) superpixels algorithm described in
[107]
C
SuperpixelSEEDS
Class implementing the SEEDS (Superpixels Extracted via Energy-Driven Sampling) superpixels algorithm described in
[192]
C
SuperpixelSLIC
Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels algorithm described in
[1]
▼N
xobjdetect
C
WBDetector
WaldBoost detector
▼N
xphoto
C
GrayworldWB
Gray-world white balance algorithm
C
LearningBasedWB
More sophisticated learning-based automatic white balance algorithm
C
SimpleWB
A simple white balance algorithm that works by independently stretching each of the input image channels to the specified range. For increased robustness it ignores the top and bottom p% of pixel values
C
WhiteBalancer
The base class for auto white balance algorithms
C
_InputArray
This is the proxy class for passing read-only input arrays into OpenCV functions
C
_InputOutputArray
C
_OutputArray
This type is very similar to InputArray except that it is used for input/output and output function parameters
C
Accumulator
C
Accumulator< char >
C
Accumulator< short >
C
Accumulator< unsigned char >
C
Accumulator< unsigned short >
C
Affine3
Affine transform
C
AffineTransformer
Wrapper class for the OpenCV Affine Transformation algorithm. :
C
AffineWarper
Affine warper factory class
C
AgastFeatureDetector
Wrapping class for feature detection using the AGAST method. :
C
AKAZE
Class implementing the
AKAZE
keypoint detector and descriptor extractor, described in
[5]
C
Algorithm
This is a base class for all more or less complex algorithms in OpenCV
C
AlignExposures
The base class for algorithms that align images of the same scene with different exposures
C
AlignMTB
This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations
▼C
Allocator
C
rebind
C
AutoBuffer
Automatically Allocated Buffer Class
C
AutoLock
C
AVIReadContainer
C
AVIWriteContainer
C
BackgroundSubtractor
Base class for background/foreground segmentation. :
C
BackgroundSubtractorKNN
K-nearest neighbours - based Background/Foreground Segmentation
Algorithm
C
BackgroundSubtractorMOG2
Gaussian Mixture-based Background/Foreground Segmentation
Algorithm
▼C
BaseCascadeClassifier
C
MaskGenerator
C
BaseClassifier
C
BFMatcher
Brute-force descriptor matcher
C
BOWImgDescriptorExtractor
Class to compute an image descriptor using the
bag of visual words
C
BOWKMeansTrainer
Kmeans -based class to train visual vocabulary using the
bag of visual words
approach. :
C
BOWTrainer
Abstract base class for training the
bag of visual words
vocabulary from a set of descriptors
C
BRISK
Class implementing the
BRISK
keypoint detector and descriptor extractor, described in
[106]
C
BufferPoolController
C
CalibrateCRF
The base class for camera response calibration algorithms
C
CalibrateDebevec
Inverse camera response function is extracted for each brightness value by minimizing an objective function as linear system. Objective function is constructed using pixel values on the same position in all images, extra term is added to make the result smoother
C
CalibrateRobertson
Inverse camera response function is extracted for each brightness value by minimizing an objective function as linear system. This algorithm uses all image pixels
C
CascadeClassifier
Cascade classifier class for object detection
C
ChiHistogramCostExtractor
An Chi based cost extraction. :
C
CirclesGridFinderParameters
C
CirclesGridFinderParameters2
C
CLAHE
Base class for Contrast Limited Adaptive Histogram Equalization. :
C
ClassifierThreshold
▼C
ClfMilBoost
C
Params
C
ClfOnlineStump
C
CommandLineParser
Designed for command line parsing
C
Complex
A complex number class
C
CompressedRectilinearPortraitWarper
C
CompressedRectilinearWarper
C
ConjGradSolver
This class is used to perform the non-linear non-constrained minimization of a function with known gradient,
C
CvFeatureEvaluator
C
CvFeatureParams
▼C
CvHaarEvaluator
C
FeatureHaar
C
CvHaarFeatureParams
▼C
CvHOGEvaluator
C
Feature
C
CvHOGFeatureParams
▼C
CvLBPEvaluator
C
Feature
C
CvLBPFeatureParams
C
CvParams
C
CylindricalWarper
Cylindrical warper factory class
C
DataDepth
A helper class for
cv::DataType
C
DataType
Template "trait" class for OpenCV primitive data types
C
DenseOpticalFlow
▼C
DescriptorMatcher
Abstract base class for matching keypoint descriptors
C
DescriptorCollection
C
DetectionROI
Struct for detection region of interest (ROI)
C
Detector
C
DMatch
Class for matching keypoint descriptors
C
DownhillSolver
This class is used to perform the non-linear non-constrained minimization of a function,
C
DrawMatchesFlags
C
DualTVL1OpticalFlow
"Dual TV L1" Optical Flow
Algorithm
C
EMDHistogramCostExtractor
An EMD based cost extraction. :
C
EMDL1HistogramCostExtractor
An EMD-L1 based cost extraction. :
C
EstimatedGaussDistribution
C
Exception
Class passed to an error
C
FarnebackOpticalFlow
Class computing a dense optical flow using the Gunnar Farneback's algorithm
C
FastFeatureDetector
Wrapping class for feature detection using the FAST method. :
C
Feature2D
Abstract base class for 2D image feature detectors and descriptor extractors
C
FileNode
File Storage
Node
class
▼C
FileNodeIterator
Used to iterate through sequences and mappings
C
SeqReader
C
FileStorage
XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or reading data to/from a file
C
FisheyeWarper
C
FlannBasedMatcher
Flann-based descriptor matcher
C
Formatted
C
Formatter
C
GeneralizedHough
Finds arbitrary template in the grayscale image using Generalized Hough Transform
C
GeneralizedHoughBallard
C
GeneralizedHoughGuil
C
GFTTDetector
Wrapping class for feature detection using the goodFeaturesToTrack function. :
C
Hamming
C
HausdorffDistanceExtractor
A simple Hausdorff distance measure between shapes defined by contours
C
HistogramCostExtractor
Abstract base class for histogram cost algorithms
C
HOGDescriptor
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector
C
KalmanFilter
Kalman filter class
C
KAZE
Class implementing the
KAZE
keypoint detector and descriptor extractor, described in
[6]
C
KeyPoint
Data structure for salient point detectors
C
KeyPointsFilter
A class filters a vector of keypoints
C
LDA
Linear Discriminant Analysis
C
LineIterator
Line iterator
C
LineSegmentDetector
Line segment detector class
C
Mat
N-dimensional dense array class
C
Mat_
Template matrix class derived from
Mat
C
MatAllocator
Custom array allocator
C
MatCommaInitializer_
Comma-separated Matrix Initializer
C
MatConstIterator
C
MatConstIterator_
Matrix read-only iterator
C
MatExpr
Matrix expression representation
C
MatIterator_
Matrix read-write iterator
C
MatOp
C
MatSize
C
MatStep
C
Matx
Template class for small matrices whose type and size are known at compilation time
C
MatxCommaInitializer
Comma-separated Matrix Initializer
C
MercatorWarper
C
MergeDebevec
The resulting HDR image is calculated as weighted average of the exposures considering exposure values and camera response
C
MergeExposures
The base class algorithms that can merge exposure sequence to a single image
C
MergeMertens
Pixels are weighted using contrast, saturation and well-exposedness measures, than images are combined using laplacian pyramids
C
MergeRobertson
The resulting HDR image is calculated as weighted average of the exposures considering exposure values and camera response
▼C
MinProblemSolver
Basic interface for all solvers
C
Function
Represents function being optimized
C
Moments
Struct returned by
cv::moments
C
MSER
Maximally stable extremal region extractor
C
MultiTracker
This class is used to track multiple objects using the specified tracker algorithm. The
MultiTracker
is naive implementation of multiple object tracking. It process the tracked objects independently without any optimization accross the tracked objects
C
MultiTracker_Alt
Base abstract class for the long-term Multi Object Trackers:
C
MultiTrackerTLD
Multi Object
Tracker
for TLD. TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into tracking, learning and detection
C
Mutex
C
NAryMatIterator
N-ary multi-dimensional array iterator
C
Node
C
NormHistogramCostExtractor
A norm based cost extraction. :
C
ORB
Class implementing the
ORB
(
oriented BRIEF
) keypoint detector and descriptor extractor
C
PaniniPortraitWarper
C
PaniniWarper
C
ParallelLoopBody
Base class for parallel data processors
C
Param
C
ParamType
C
ParamType< Algorithm >
C
ParamType< bool >
C
ParamType< double >
C
ParamType< float >
C
ParamType< Mat >
C
ParamType< Scalar >
C
ParamType< std::vector< Mat > >
C
ParamType< String >
C
ParamType< uchar >
C
ParamType< uint64 >
C
ParamType< unsigned >
C
PCA
Principal Component Analysis
C
PlaneWarper
Plane warper factory class
C
Point3_
Template class for 3D points specified by its coordinates
x
,
y
and
z
C
Point_
Template class for 2D points specified by its coordinates
x
and
y
C
Ptr
Template class for smart pointers with shared ownership
C
QtFont
QtFont
available only for Qt. See
cv::fontQt
C
Range
Template class specifying a continuous subsequence (slice) of a sequence
C
Rect_
Template class for 2D rectangles
C
RNG
Random Number Generator
C
RNG_MT19937
Mersenne Twister random number generator
C
RotatedRect
The class represents rotated (i.e. not up-right) rectangles on a plane
C
Scalar_
Template class for a 4-element vector derived from
Vec
C
Seq
C
SeqIterator
C
ShapeContextDistanceExtractor
Implementation of the Shape Context descriptor and matching algorithm
C
ShapeDistanceExtractor
Abstract base class for shape distance algorithms
C
ShapeTransformer
Abstract base class for shape transformation algorithms
C
SimilarRects
▼C
SimpleBlobDetector
Class for extracting blobs from an image. :
C
Params
C
Size_
Template class for specifying the size of an image or rectangle
C
SL2
C
softdouble
C
softfloat
▼C
SparseMat
The class
SparseMat
represents multi-dimensional sparse numerical arrays
C
Hdr
Sparse matrix header
C
Node
Sparse matrix node - element of a hash table
C
SparseMat_
Template sparse n-dimensional array class derived from
SparseMat
C
SparseMatConstIterator
Read-Only Sparse Matrix Iterator
C
SparseMatConstIterator_
Template Read-Only Sparse Matrix Iterator Class
C
SparseMatIterator
Read-write Sparse Matrix Iterator
C
SparseMatIterator_
Template Read-Write Sparse Matrix Iterator Class
C
SparseOpticalFlow
Base interface for sparse optical flow algorithms
C
SparsePyrLKOpticalFlow
Class used for calculating a sparse optical flow
C
SphericalWarper
Spherical warper factory class
C
StereoBM
Class for computing stereo correspondence using the block matching algorithm, introduced and contributed to OpenCV by K. Konolige
C
StereographicWarper
C
StereoMatcher
The base class for stereo correspondence algorithms
C
StereoSGBM
The class implements the modified H. Hirschmuller algorithm
[84]
that differs from the original one as follows:
C
Stitcher
High level image stitcher
C
String
C
StrongClassifierDirectSelection
▼C
Subdiv2D
C
QuadEdge
C
Vertex
C
SVD
Singular Value Decomposition
C
TermCriteria
The class defining termination criteria for iterative algorithms
C
ThinPlateSplineShapeTransformer
Definition of the transformation
C
TickMeter
Class to measure passing time
C
TLSData
C
TLSDataContainer
C
Tonemap
Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range
C
TonemapDrago
Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in logarithmic domain
C
TonemapDurand
This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter and compresses contrast of the base layer thus preserving all the details
C
TonemapMantiuk
This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid, transforms contrast values to HVS response and scales the response. After this the image is reconstructed from new contrast values
C
TonemapReinhard
This is a global tonemapping operator that models human visual system
C
Tracker
Base abstract class for the long-term tracker:
▼C
TrackerBoosting
This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm
C
Params
▼C
TrackerCSRT
Discriminative Correlation Filter
Tracker
with Channel and Spatial Reliability
C
Params
C
TrackerFeature
Abstract base class for
TrackerFeature
that represents the feature
C
TrackerFeatureFeature2d
TrackerFeature
based on
Feature2D
▼C
TrackerFeatureHAAR
TrackerFeature
based on HAAR features, used by
TrackerMIL
and many others algorithms
C
Params
C
TrackerFeatureHOG
TrackerFeature
based on HOG
C
TrackerFeatureLBP
TrackerFeature
based on LBP
C
TrackerFeatureSet
Class that manages the extraction and selection of features
▼C
TrackerGOTURN
GOTURN (
[79]
) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers, GOTURN is much faster due to offline training without online fine-tuning nature. GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video, we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly robust to viewpoint changes, lighting changes, and deformations. Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227. Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2. Original paper is here:
http://davheld.github.io/GOTURN/GOTURN.pdf
As long as original authors implementation:
https://github.com/davheld/GOTURN#train-the-tracker
Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
https://github.com/Auron-X/GOTURN_Training_Toolkit
GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository
C
Params
▼C
TrackerKCF
KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed. This tracking method is an implementation of
[80]
which is extended to KCF with color-names features (
[38]
). The original paper of KCF is available at
http://www.robots.ox.ac.uk/~joao/publications/henriques_tpami2015.pdf
as well as the matlab implementation. For more information about KCF with color-names features, please refer to
http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html
C
Params
▼C
TrackerMedianFlow
Median Flow tracker implementation
C
Params
▼C
TrackerMIL
The MIL algorithm trains a classifier in an online manner to separate the object from the background
C
Params
C
TrackerModel
Abstract class that represents the model of the target. It must be instantiated by specialized tracker
C
TrackerMOSSE
MOSSE tracker note, that this tracker works with grayscale images, if passed bgr ones, they will get converted internally.
[17]
Visual Object Tracking using Adaptive Correlation Filters
C
TrackerSampler
Class that manages the sampler in order to select regions for the update the model of the tracker [AAM] Sampling e Labeling. See table I and section III B
C
TrackerSamplerAlgorithm
Abstract base class for
TrackerSamplerAlgorithm
that represents the algorithm for the specific sampler
▼C
TrackerSamplerCS
TrackerSampler
based on CS (current state), used by algorithm
TrackerBoosting
C
Params
▼C
TrackerSamplerCSC
TrackerSampler
based on CSC (current state centered), used by MIL algorithm
TrackerMIL
C
Params
▼C
TrackerSamplerPF
This sampler is based on particle filtering
C
Params
This structure contains all the parameters that can be varied during the course of sampling algorithm. Below is the structure exposed, together with its members briefly explained with reference to the above discussion on algorithm's working
C
TrackerStateEstimator
Abstract base class for
TrackerStateEstimator
that estimates the most likely target state
▼C
TrackerStateEstimatorAdaBoosting
TrackerStateEstimatorAdaBoosting
based on ADA-Boosting
C
TrackerAdaBoostingTargetState
Implementation of the target state for
TrackerAdaBoostingTargetState
▼C
TrackerStateEstimatorMILBoosting
TrackerStateEstimator
based on Boosting
C
TrackerMILTargetState
C
TrackerStateEstimatorSVM
TrackerStateEstimator
based on SVM
C
TrackerTargetState
Abstract base class for
TrackerTargetState
that represents a possible state of the target
▼C
TrackerTLD
TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into tracking, learning and detection
C
Params
C
TransverseMercatorWarper
C
UMat
C
UMatData
C
v_reg
C
Vec
Template class for short numerical vectors, a partial case of
Matx
C
VecCommaInitializer
Comma-separated
Vec
Initializer
C
VideoCapture
Class for video capturing from video files, image sequences or cameras
C
VideoWriter
Video writer class
C
WarperCreator
Image warper factories base class
C
WeakClassifierHaarFeature
C
WImage
Image class which provides a thin layer around an
IplImage
C
WImageBuffer
C
WImageBufferC
C
WImageC
C
WImageView
C
WImageViewC
▼N
cvflann
▼N
anyimpl
C
bad_any_cast
C
base_any_policy
C
choose_policy
C
choose_policy< any >
C
choose_policy< bool >
C
choose_policy< float >
C
choose_policy< signed char >
C
choose_policy< signed long >
C
choose_policy< signed short >
C
choose_policy< T * >
C
choose_policy< unsigned char >
C
choose_policy< unsigned long >
C
choose_policy< unsigned short >
C
CV_FINAL
C
empty_any
C
SinglePolicy
C
typed_base_any_policy
▼N
lsh
C
LshStats
C
LshTable
C
Accumulator
C
Accumulator< char >
C
Accumulator< short >
C
Accumulator< unsigned char >
C
Accumulator< unsigned short >
C
any
C
AutotunedIndex
C
AutotunedIndexParams
C
BranchStruct
C
ChiSquareDistance
C
CompositeIndex
C
CompositeIndexParams
C
CreatorNotFound
C
Datatype
C
Datatype< char >
C
Datatype< double >
C
Datatype< float >
C
Datatype< short >
C
Datatype< unsigned char >
C
Datatype< unsigned short >
C
DynamicBitset
C
False
C
FLANNException
C
Hamming
C
Hamming2
C
HammingLUT
▼C
Heap
C
CompareT
C
HellingerDistance
C
HierarchicalClusteringIndex
C
HierarchicalClusteringIndexParams
C
HistIntersectionDistance
C
Index
C
index_creator
C
index_creator< False, False, Distance >
C
index_creator< False, VectorSpace, Distance >
C
IndexHeader
C
KDTreeIndex
C
KDTreeIndexParams
C
KDTreeSingleIndex
C
KDTreeSingleIndexParams
C
KL_Divergence
▼C
KMeansIndex
C
KMeansDistanceComputer
C
KMeansIndexParams
C
KNNRadiusUniqueResultSet
C
KNNResultSet
C
KNNSimpleResultSet
C
KNNUniqueResultSet
C
L2_Simple
C
LinearIndex
C
LinearIndexParams
C
Logger
C
LshIndex
C
LshIndexParams
C
Matrix
C
MaxDistance
C
MinkowskiDistance
C
NNIndex
C
ObjectFactory
C
PooledAllocator
C
RadiusResultSet
C
RadiusUniqueResultSet
C
ResultSet
C
SavedIndexParams
C
SearchParams
C
simpleDistance
C
simpleDistance< ChiSquareDistance< ElementType >, ElementType >
C
simpleDistance< HellingerDistance< ElementType >, ElementType >
C
simpleDistance< L2< ElementType >, ElementType >
C
simpleDistance< L2_Simple< ElementType >, ElementType >
C
simpleDistance< MinkowskiDistance< ElementType >, ElementType >
C
squareDistance
C
squareDistance< ChiSquareDistance< ElementType >, ElementType >
C
squareDistance< HellingerDistance< ElementType >, ElementType >
C
squareDistance< L2< ElementType >, ElementType >
C
squareDistance< L2_Simple< ElementType >, ElementType >
C
squareDistance< MinkowskiDistance< ElementType >, ElementType >
C
StartStopTimer
C
True
C
UniqueRandom
▼C
UniqueResultSet
C
DistIndex
C
UntypedMatrix
C
ZeroIterator
▼N
cvv
▼N
impl
C
CallMetaData
Optional information about a location in Code
C
FinalShowCaller
RAII-class to call
finalShow()
in it's dtor
▼N
matlab
C
ArgumentParser
Parses inputs to a method and resolves the argument names
C
DefaultTraits
C
InheritType
C
Map
C
MxArray
A thin wrapper around Matlab's mxArray types
C
Traits
C
Traits< bool >
C
Traits< char >
C
Traits< double >
C
Traits< float >
C
Traits< int16_t >
C
Traits< int32_t >
C
Traits< int64_t >
C
Traits< int8_t >
C
Traits< matlab::InheritType >
C
Traits< uint16_t >
C
Traits< uint32_t >
C
Traits< uint64_t >
C
Traits< uint8_t >
▼N
NcvCTprep
C
assertTest
C
CT_ASSERT_FAILURE
C
CT_ASSERT_FAILURE< true >
C
<AVCaptureVideoDataOutputSampleBufferDelegate>
▼C
Cv16suf
C
_fp16Format
▼C
Cv32suf
C
_fp32Format
C
Cv64suf
C
CvAbstractCamera
C
CvAttrList
List of attributes. :
C
CvAvgComp
C
CvBox2D
C
CvChain
C
CvChainPtReader
C
CvConnectedComp
C
CvContour
C
CvConvexityDefect
C
CvFileNode
C
CvFont
C
CvGraph
C
CvGraphEdge
C
CvGraphScanner
C
CvGraphVtx
C
CvGraphVtx2D
C
CvHaarClassifier
C
CvHaarClassifierCascade
C
CvHaarFeature
C
CvHaarStageClassifier
C
cvhalDFT
Dummy structure storing DFT/DCT context
C
cvhalFilter2D
Dummy structure storing filtering context
C
cvhalKeyPoint
C
CvHistogram
C
CvHuMoments
C
CvKalman
C
CvLevMarq
C
CvLineIterator
C
CvMat
C
CvMatND
C
CvMemBlock
C
CvMemStorage
C
CvMemStoragePos
C
CvModuleInfo
C
CvMoments
C
CvNArrayIterator
C
CvPhotoCamera
C
<CvPhotoCameraDelegate >
C
CvPluginFuncInfo
C
CvPoint
C
CvPoint2D32f
C
CvPoint2D64f
C
CvPoint3D32f
C
CvPoint3D64f
C
CvRect
C
CvScalar
C
CvSeq
C
CvSeqBlock
C
CvSeqReader
C
CvSeqWriter
C
CvSet
C
CvSetElem
C
CvSize
C
CvSize2D32f
C
CvSlice
C
CvSparseMat
C
CvSparseMatIterator
C
CvSparseNode
C
CvStereoBMState
C
CvString
C
CvStringHashNode
C
CvTermCriteria
C
CvTreeNodeIterator
C
CvType
Class for automatic module/RTTI data registration/unregistration
C
CvTypeInfo
Type information
C
CvVideoCamera
C
<CvVideoCameraDelegate >
C
Gray2RGB
C
HaarClassifierCascadeDescriptor
C
HaarClassifierNode128
C
HaarClassifierNodeDescriptor32
C
HaarFeature64
C
HaarFeatureDescriptor32
C
HaarStage64
C
hashnode_i
C
hashtable_int
C
HLS2RGB
C
HSV2RGB
C
INCVMemAllocator
C
IplConvKernel
C
IplConvKernelFP
C
IplImage
C
IplROI
C
Lab2RGB
C
Luv2RGB
C
NCVBroxOpticalFlowDescriptor
Model and solver parameters
C
NCVMatrix
C
NCVMatrixAlloc
C
NCVMatrixReuse
C
NCVMemNativeAllocator
C
NCVMemPtr
C
NCVMemSegment
C
NCVMemStackAllocator
C
NcvPoint2D32s
C
NcvPoint2D32u
C
NcvRect32s
C
NcvRect32u
C
NcvRect8u
C
NcvSize32s
C
NcvSize32u
C
NCVVector
C
NCVVectorAlloc
C
NCVVectorReuse
C
NppStInterpolationState
C
NSObject
C
<NSObject>
C
<NSObjectNSObject>
C
RGB2Gray
C
RGB2HLS
C
RGB2HSV
C
RGB2Lab
C
RGB2Luv
C
RGB2RGB
C
RGB2XYZ
C
RGB2YCrCb
C
RGB2YUV
C
THash
Struct, holding a node in the hashtable
C
XYZ2RGB
C
YCrCb2RGB
C
YUV2RGB