numpy如何将nan值填充为前面的非nan值
时间: 2024-04-30 21:23:18
浏览: 180
可以使用numpy中的fillna()函数,将参数method设置为'ffill',表示使用前向填充的方式。具体操作步骤如下:
```python
import numpy as np
# 创建一个含有nan值的数组
a = np.array([1, np.nan, 2, np.nan, np.nan, 3])
# 使用前向填充方式将nan值填充为前面的非nan值
a = np.nan_to_num(a, nan=np.nan, copy=True)
a = pd.Series(a).fillna(method='ffill').values
print(a)
[ 1. 1. 2. 2. 2. 3.]
其中,np.nan_to_num()函数将nan值转换为0,以保证fillna()函数能够正确运行。由于fillna()函数返回的是一个pandas的Series对象,需要再次将其转换为numpy数组。
相关问题
numpy如何向后填充nan值
可以使用numpy中的pad函数来向后填充nan值。
示例代码:
```python
import numpy as np
# 创建一个带有nan值的数组
a = np.array([1, 2, np.nan, 4, np.nan, 6])
# 向后填充nan值
a = np.pad(a, (0, 1), mode='constant', constant_values=np.nan)
print(a)
```
numpy nan填充为0
您可以使用`numpy.nan_to_num()`函数将NaN值填充为0。该函数将NaN值替换为0,将无穷大的值替换为极大浮点数(默认为`np.inf`)或者极小浮点数(默认为`-np.inf`)。
以下是一个示例代码:
```python
import numpy as np
arr = np.array([1, 2, np.nan, 4, np.inf, -np.inf])
arr = np.nan_to_num(arr)
print(arr)
```
最低
0.47元/天
开通会员,查看完整答案

成为会员后, 你将解锁


相关推荐















