The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
Zhongguo Fei Ai Za Zhi.
2023 Jan 20; 26(1): 31–37.
Language:
Chinese
|
English
基于影像学诊断非小细胞肺癌肿大淋巴结良恶性的研究进展
Research Progress in Imaging-based Diagnosis of Benign and MalignantEnlarged Lymph Nodes in Non-small Cell Lung Cancer
and
Kai QIN
200030 上海,上海交通大学医学院附属胸科医院放疗科
Xiaolong FU
200030 上海,上海交通大学医学院附属胸科医院放疗科
200030 上海,上海交通大学医学院附属胸科医院放疗科
Bray F,
Ferlay J,
Soerjomataram I,
et al..
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
,
2018,
68
(
6
): 394-424. doi: 10.3322/caac.21492
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Duma N,
Santana-Davila R,
Molina JR.
Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment
.
Mayo Clin Proc
,
2019,
94
(
8
): 1623-1640. doi: 10.1016/j.mayocp.2019.01.013
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
Stamatis G.
Staging of lung cancer: the role of noninvasive, minimally invasive and invasive techniques
.
Eur Respir J
,
2015,
46
(
2
): 521-531. doi: 10.1183/09031936.00126714
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Tsim S,
O’Dowd CA,
Milroy R,
et al..
Staging of non-small cell lung cancer (NSCLC): a review
.
Respir Med
,
2010,
104
(
12
): 1767-1774. doi: 10.1016/j.rmed.2010.08.005
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Asamura H,
Chansky K,
Crowley J,
et al..
The International Association for the Study of Lung Cancer Lung Cancer Staging Project: Proposals for the revision of the N descriptors in the forthcoming 8
th
edition of the TNM classification for lung cancer
.
J Thorac Oncol
,
2015,
10
(
12
): 1675-1684. doi: 10.1097/JTO.0000000000000678
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Endoh H,
Ichikawa A,
Yamamoto R,
et al..
Prognostic impact of preoperative FDG-PET positive lymph nodes in lung cancer
.
Int J Clin Oncol
,
2021,
26
(
1
): 87-94. doi: 10.1007/s10147-020-01783-x
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Sanz-Santos J,
Call S.
Preoperative staging of the mediastinum is an essential and multidisciplinary task
.
Respirology
,
2020,
25 Suppl 2
: 37-48. doi: 10.1111/resp.13901
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Melloni G,
Mazza F,
Venturino M,
et al..
Role of endobronchial ultrasound-guided transbronchial needle aspiration in staging of lung cancer: a thoracic surgeon’s perspective
.
Mediastinum
,
2021,
5
: 2. doi: 10.21037/med-20-23
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Nestle U,
De Ruysscher D,
Ricardi U,
et al..
ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer
.
Radiother Oncol
,
2018,
127
(
1
): 1-5. doi: 10.1016/j.radonc.2018.02.023
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Silvestri GA,
Gonzalez AV,
Jantz MA,
et al..
Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3
rd
ed: American College of Chest Physicians evidence-based clinical practice guidelines
.
Chest
,
2013,
143
(
Suppl
): e211S-e250S. doi: 10.1378/chest.12-2355
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Toloza EM,
Harpole L,
Mccrory DC.
Noninvasive staging of non-small cell lung cancer
.
Chest
,
2003,
123
(1):137S-146
S
. doi: 10.1378/chest.123.1_suppl.137s
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Prenzel KL,
Monig SP,
Sinning JM,
et al..
Lymph node size and metastatic infiltration in non-small cell lung cancer
.
Chest
,
2003,
123
(
2
): 463-467. doi: 10.1378/chest.123.2.463
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
Kim YK,
Lee KS,
Kim BT,
et al..
Mediastinal nodal staging of nonsmall cell lung cancer using integrated
18
F-FDG PET/CT in a tuberculosis-endemic country: diagnostic efficacy in 674 patients
.
Cancer
,
2007,
109
(
6
): 1068-1077. doi: 10.1002/cncr.22518
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Lee JW,
Kim BS,
Lee DS,
et al..
18
F-FDG PET/CT in mediastinal lymph node staging of non-small-cell lung cancer in a tuberculosis-endemic country: consideration of lymph node calcification and distribution pattern to improve specificity
.
Eur J Nucl Med Mol Imaging
,
2009,
36
(
11
): 1794-1802. doi: 10.1007/s00259-009-1155-4
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Lee JW,
Kim EY,
Kim DJ,
et al..
The diagnostic ability of (18)F-FDG PET/CT for mediastinal lymph node staging using (18)F-FDG uptake and volumetric CT histogram analysis in non-small cell lung cancer
.
Eur Radiol
,
2016,
26
(
12
): 4515-4523. doi: 10.1007/s00330-016-4292-8
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Flechsig P,
Frank P,
Kratochwil C,
et al..
Radiomic analysis using density threshold for FDG-PET/CT-based N-staging in lung cancer patients
.
Mol Imaging Biol
,
2017,
19
(
2
): 315-322. doi: 10.1007/s11307-016-0996-z
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Shao TT,
Yu LJ,
Li YC,
et al..
Density and SUV ratios from PET/CT in the detection of mediastinal lymph node metastasis in non-small cell lung cancer
.
Zhongguo Fei Ai Za Zhi
,
2015,
18
(
3
): 155-160.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
[邵亭亭,
et al..
PET/CT密度比与摄取比判断肺癌纵隔淋巴结转移的研究
.
中国肺癌杂志
,
2015,
18
(
3
): 155-160.] doi: 10.3779/j.issn.1009-3419.2015.03.05
[
CrossRef
]
[
Google Scholar
]
18.
Yin G,
Song Y,
Li X,
et al..
Prediction of mediastinal lymph node metastasis based on (18)F-FDG PET/CT imaging using support vector machine in non-small cell lung cancer
.
Eur Radiol
,
2021,
31
(
6
): 3983-3992. doi: 10.1007/s00330-020-07466-5
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
Zhu Q,
Ren C,
Zhang Y,
et al..
Comparative imaging study of mediastinal lymph node from pre-surgery dual energy CT versus post-surgeron verifications in non-small cell lung cancer patients
.
Beijing Da Xue Xue Bao (Yi Xue Ban)
,
2020,
52
(
4
): 730-737.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
et al..
能谱CT诊断非小细胞肺癌纵隔淋巴结转移的应用价值
.
北京大学学报(医学版)
,
2020,
52
(
4
): 730-737.] doi: 10.19723/j.issn.1671-167X.2020.04.026
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Endoh H,
Yamamoto R,
Ichikawa A,
et al..
Clinicopathologic significance of false-positive lymph node status on FDG-PET in lung cancer
.
Clin Lung Cancer
,
2021,
22
(
3
): 218-224. doi: 10.1016/j.cllc.2020.05.002
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Hochhegger B,
Alves GR,
Irion KL,
et al..
PET/CT imaging in lung cancer: indications and findings
.
J Bras Pneumol
,
2015,
41
(
3
): 264-274. doi: 10.1590/S1806-37132015000004479
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Al-Sarraf N,
Gately K,
Lucey J,
et al..
Lymph node staging by means of positron emission tomography is less accurate in non-small cell lung cancer patients with enlarged lymph nodes: analysis of 1,145 lymph nodes
.
Lung Cancer
,
2008,
60
(
1
): 62-68. doi: 10.1016/j.lungcan.2007.08.036
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Adams MC,
Turkington TG,
Wilson JM,
et al..
A systematic review of the factors affecting accuracy of SUV measurements
.
AJR Am J Roentgenol
,
2010,
195
(
2
): 310-320. doi: 10.2214/AJR.10.4923
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Schmidt-Hansen M,
Baldwin DR,
Hasler E,
et al..
PET/CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer
.
Cochrane Database Syst Rev
,
2014(
11
):
CD009519
. doi: 10.1002/14651858.CD009519.pub2
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Kumar A,
Dutta R,
Kannan U,
et al..
Evaluation of mediastinal lymph nodes using F-FDG PET-CT scan and its histopathologic correlation
.
Ann Thorac Med
,
2011,
6
(
1
): 11-16. doi: 10.4103/ 1817-1737.74270
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
26.
Nakanishi K,
Nakamura S,
Sugiyama T,
et al..
Diagnostic utility of metabolic parameters on FDG PET/CT for lymph node metastasis in patients with cN2 non-small cell lung cancer
.
BMC Cancer
,
2021,
21
(
1
): 983. doi: 10.1186/s12885-021-08688-6
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Pang L,
Bo X,
Wang J,
et al..
Role of dual-time point (18)F-FDG PET/CT imaging in the primary diagnosis and staging of hilar cholangiocarcinoma
.
Abdom Radiol (NY)
,
2021,
46
(
9
): 4138-4147. doi: 10.1007/s00261-021-03071-2
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
Lee SW,
Kim SJ.
Is delayed image of
18
F-FDG PET/CT necessary for mediastinal lymph node staging in non-small cell lung cancer patients?
Clin Nucl Med
,
2022,
47
(
5
): 414-421. doi: 10.1097/RLU.0000000000004110
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
Zhou X,
Wang S,
Xu X,
et al..
Higher accuracy of [(68) Ga]Ga-DOTA-FAPI-04 PET/CT comparing with 2-[(18)F]FDG PET/CT in clinical staging of NSCLC
.
Eur J Nucl Med Mol Imaging
,
2022,
49
(
8
): 2983-2993. doi: 10.1007/s00259-022-05818-5
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
Hatabu H,
Ohno Y,
Gefter WB,
et al..
Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: fleischner society position paper
.
Radiology
,
2020,
297
(
2
): 286-301. doi: 10.1148/radiol.2020201138
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
Brea TP,
Raviña AR,
Villamor JMC,
et al..
Use of magnetic resonance imaging for N-staging in patients with non-small cell lung cancer. A systematic review
.
Arch Bronconeumol (Engl Ed)
,
2019,
55
(
1
): 9-16. doi: 10.1016/j.arbr.2018.03.013
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
Cakmak V,
Ufuk F,
Karabulut N.
Diffusion-weighted MRI of pulmonary lesions: Comparison of apparent diffusion coefficient and lesion-to-spinal cord signal intensity ratio in lesion characterization
.
J Magn Reson Imaging
,
2017,
45
(
3
): 845-854. doi: 10.1002/jmri.25426
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
Cai RF,
Cui L,
Yin JB,
et al..
Value of LSR and ADCs in differential diagnosis of hilar and mediastinal lymph nodes in lung cancer
.
Zhonghua Yi Xue Za Zhi
,
2018,
98
(
37
): 3009-3013.
[
PubMed
]
[
Google Scholar
]
[蔡荣芳,
et al..
病灶脊髓信号强度比及表观扩散系数对肺癌肺门纵隔淋巴结转移的诊断价值
.
中华医学杂志
,
2018,
98
(
37
): 3009-3013.] doi: 10.3760/cma.j.issn.0376-2491.2018.37.012
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
Shen G,
Lan Y,
Zhang K,
et al..
Comparison of
18
F-FDG PET/CT and DWI for detection of mediastinal nodal metastasis in non-small cell lung cancer: A meta-analysis
.
PLoS One
,
2017,
12
(
3
): e0173104. doi: 10.1371/journal.pone.0173104
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
Bak SH,
Kim C,
Kim CH,
et al..
Magnetic resonance imaging for lung cancer: a state-of-the-art review
.
Prec Future Med
,
2022,
6
(
1
): 49-77. doi: 10.23838/pfm.2021.00170
[
CrossRef
]
[
Google Scholar
]
36.
Gefter WB,
Lee KS,
Schiebler ML,
et al..
Pulmonary functional imaging: part 2-state-of-the-art clinical applications and opportunities for improved patient care
.
Radiology
,
2021,
299
(
3
): 524-538. doi: 10.1148/radiol.2021204033
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
Lambin P,
Rios-Velazquez E,
Leijenaar R,
et al..
Radiomics: extracting more information from medical images using advanced feature analysis
.
Eur J Cancer
,
2012,
48
(
4
): 441-446. doi: 10.1016/j.ejca.2011.11.036
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
El Ayachy R,
Giraud N,
Giraud P,
et al..
The role of radiomics in lung cancer: from screening to treatment and follow-up
.
Front Oncol
,
2021,
11
: 603595. doi: 10.3389/fonc.2021.603595
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
Andersen MB,
Harders SW,
Ganeshan B,
et al..
CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer
.
Acta Radiol
,
2016,
57
(
6
): 669-676. doi: 10.1177/0284185115598808
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
Bayanati H,
E Thornhill R,
Souza CA,
et al..
Quantitative CT texture and shape analysis: can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer?
Eur Radiol
,
2015,
25
(
2
): 480-487. doi: 10.1007/s00330-014-3420-6
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
Sha X,
Gong G,
Qiu Q,
et al..
Discrimination of mediastinal metastatic lymph nodes in NSCLC based on radiomic features in different phases of CT imaging
.
BMC Med Imaging
,
2020,
20
(
1
): 12. doi: 10.1186/s12880-020-0416-3
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
Yoo J,
Cheon M,
Park YJ,
et al..
Machine learning-based diagnostic method of pre-therapeutic (18)F-FDG PET/CT for evaluating mediastinal lymph nodes in non-small cell lung cancer
.
Eur Radiol
,
2021,
31
(
6
): 4184-4194. doi: 10.1007/s00330-020-07523-z
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
Xie Y,
Zhao H,
Guo Y,
et al..
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer
.
Eur Radiol
,
2021,
31
(
8
): 6030-6038. doi: 10.1007/s00330-020-07624-9
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
Ouyang ML,
Wang YR,
Deng QS,
et al..
Development and validation of a (18)F-FDG PET-based radiomic model for evaluating hypermetabolic mediastinal-hilar lymph nodes in non-small-cell lung cancer
.
Front Oncol
,
2021,
11
: 710909. doi: 10.3389/fonc.2021.710909
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
LeCun Y,
Bengio Y,
Hinton G.
Deep learning
.
Nature
,
2015,
521
(
7553
): 436-444. doi: 10.1038/nature14539
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
Chan HP,
Samala RK,
Hadjiiski LM,
et al..
Deep learning in medical image analysis
.
Adv Exp Med Biol
,
2020,
1213
: 3-21. doi: 10.1007/978-3-030-33128-3_1
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
Pham TD.
Classification of benign and metastatic lymph nodes in lung cancer with deep learning
.
2020 IEEE 20
th
International Conference on Bioinformatics and Bioengineering (BIBE)
,
2020
: 728-733. doi: 10.1109/BIBE50027.2020.00124
[
CrossRef
]
[
Google Scholar
]
48.
Rajpurkar P,
Chen E,
Banerjee O,
et al..
AI in health and medicine
.
Nat Med
,
2022,
28
(
1
): 31-38. doi: 10.1038/s41591-021-01614-0
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
49.
Lee JH,
Ha EJ,
Kim JH.
Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT
.
Eur Radiol
,
2019,
29
(
10
): 5452-5457. doi: 10.1007/s00330-019-06098-8
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
Lee JH,
Ha EJ,
Kim D,
et al..
Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training
.
Eur Radiol
,
2020,
30
(
6
): 3066-3072. doi: 10.1007/s00330-019-06652-4
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Articles from
Chinese Journal of Lung Cancer
are provided here courtesy of
Editorial office of Chinese Journal of Lung Cancer