在Android中,应用的启动都是从
Application
的创建开始,所以基本上都会来自定义实现
Application
并在该类中进行一些初始化操作,如推送、分享、支付等。
Flutter
也不例外,也会在自定义的
Application
中进行
Engine
的初始化操作。
1、Engine的初始化
FlutterApplication
就是一个自定义的
Application
类,在该类中进行了
Engine
的初始化,代码如下。
public class FlutterApplication extends Application {
@Override
@CallSuper
public void onCreate() {
super.onCreate();
//初始化
FlutterMain.startInitialization(this);
复制代码
再来看
FlutterMain
类的
startInitialization
方法,因为
Engine
的初始化是通过该方法开始的。
public static void startInitialization(@NonNull Context applicationContext) {
//如果在进行Robolectric测试,则暂不进行初始化操作
if (isRunningInRobolectricTest) {
return;
FlutterLoader.getInstance().startInitialization(applicationContext);
复制代码
在
startInitialization
方法中又调用了
FlutterLoader
的
startInitialization
方法,该方法是
Engine
初始化的具体实现。
public class FlutterLoader {
public void startInitialization(@NonNull Context applicationContext) {
startInitialization(applicationContext, new Settings());
public void startInitialization(@NonNull Context applicationContext, @NonNull Settings settings) {
//不允许多次初始化
if (this.settings != null) {
return;
//必须在主线程中初始化
if (Looper.myLooper() != Looper.getMainLooper()) {
throw new IllegalStateException("startInitialization must be called on the main thread");
this.settings = settings;
//当前时间
long initStartTimestampMillis = SystemClock.uptimeMillis();
//初始化配置
initConfig(applicationContext);
//初始化资源
initResources(applicationContext);
//加载flutter.so动态库
System.loadLibrary("flutter");
//初始化一个类VsyncWaiter,主要是同步Android的VSYNC信号给Engine
VsyncWaiter
.getInstance((WindowManager) applicationContext.getSystemService(Context.WINDOW_SERVICE))
.init();
//记录Engine的初始化时间
long initTimeMillis = SystemClock.uptimeMillis() - initStartTimestampMillis;
FlutterJNI.nativeRecordStartTimestamp(initTimeMillis);
复制代码
这里重点在于
flutter.so
动态库的加载。由于Java VM在加载动态库时第一个调用的是
JNI_OnLoad
函数,所以就先来看该函数的实现。
[-> flutter/shell/platform/android/library_loader.cc]
JNIEXPORT jint JNI_OnLoad(JavaVM* vm, void* reserved) {
//Initialize the Java VM.
//将vm作为一个全局变量
fml::jni::InitJavaVM(vm);
//获取当前线程的env
JNIEnv* env = fml::jni::AttachCurrentThread();
bool result = false;
//Register FlutterMain.
//Java Native方法的注册,主要是注册了FlutterJNI类的nativeInit、nativeRecordStartTimestamp方法。
result = flutter::FlutterMain::Register(env);
//Register PlatformView
//Java Native方法的注册
result = flutter::PlatformViewAndroid::Register(env);
//Register VSyncWaiter.
//Java Native方法的注册
result = flutter::VsyncWaiterAndroid::Register(env);
return JNI_VERSION_1_4;
复制代码
到此,
Engine
就已经成功初始化,流程图如下。
2、Engine对象的创建
Engine
初始化成功后,就可以来创建
Engine
。在
Android
中,
Engine
是从
FlutterActivity
的
onCreate
方法开始创建的,代码如下。
public class FlutterActivity extends Activity implements FlutterView.Provider, PluginRegistry, ViewFactory {
private final FlutterActivityDelegate delegate = new FlutterActivityDelegate(this, this);
private final FlutterActivityEvents eventDelegate = delegate;
private final FlutterView.Provider viewProvider = delegate;
private final PluginRegistry pluginRegistry = delegate;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
eventDelegate.onCreate(savedInstanceState);
复制代码
顾名思义,
FlutterActivityDelegate
是一个代理类,全权负责
FlutterActivity
的所有工作。由于
Activity
在其生命周期内调用的第一个方法是
onCreate
。所以来看类
FlutterActivityDelegate
中的
onCreate
方法的具体实现。
public final class FlutterActivityDelegate
implements FlutterActivityEvents,
FlutterView.Provider,
PluginRegistry {
@Override
public void onCreate(Bundle savedInstanceState) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
Window window = activity.getWindow();
window.addFlags(LayoutParams.FLAG_DRAWS_SYSTEM_BAR_BACKGROUNDS);
window.setStatusBarColor(0x40000000);
window.getDecorView().setSystemUiVisibility(PlatformPlugin.DEFAULT_SYSTEM_UI);
String[] args = getArgsFromIntent(activity.getIntent());
FlutterMain.ensureInitializationComplete(activity.getApplicationContext(), args);
//是否自定义FlutterView,默认不需要自定义
flutterView = viewFactory.createFlutterView(activity);
if (flutterView == null) {
//是否自定义FlutterNativeView,默认不自定义
FlutterNativeView nativeView = viewFactory.createFlutterNativeView();
//创建flutterView
flutterView = new FlutterView(activity, null, nativeView);
//flutterView铺满整个屏幕
flutterView.setLayoutParams(matchParent);
activity.setContentView(flutterView);
//创建launchView,launchView是Flutter加载第一帧前的展示View
launchView = createLaunchView();
if (launchView != null) {
addLaunchView();
if (loadIntent(activity.getIntent())) {
return;
//获取flutter代码路径
String appBundlePath = FlutterMain.findAppBundlePath();
if (appBundlePath != null) {
//运行Flutter代码
runBundle(appBundlePath);
复制代码
在
onCreate
方法中,主要做了以下两件事。
FlutterView
,该View是Flutter界面在Android端的载体。
先来看
FlutterView
的创建,它继承自
SurfaceView
,代码如下。
public class FlutterView extends SurfaceView implements BinaryMessenger, TextureRegistry {
public FlutterView(Context context, AttributeSet attrs, FlutterNativeView nativeView) {
super(context, attrs);
Activity activity = getActivity(getContext());
if (activity == null) {
throw new IllegalArgumentException("Bad context");
if (nativeView == null) {
//创建FlutterNativeView对象
mNativeView = new FlutterNativeView(activity.getApplicationContext());
} else {
mNativeView = nativeView;
复制代码
在
FlutterView
中,会创建一个
FlutterNativeView
对象,其构造函数的实现如下。
public class FlutterNativeView implements BinaryMessenger {
public FlutterNativeView(@NonNull Context context) {
this(context, false);
public FlutterNativeView(@NonNull Context context, boolean isBackgroundView) {
mContext = context;
//创建FlutterPluginRegistry对象
mPluginRegistry = new FlutterPluginRegistry(this, context);
//创建FlutterJNI对象
mFlutterJNI = new FlutterJNI();
mFlutterJNI.addIsDisplayingFlutterUiListener(flutterUiDisplayListener);
//创建DartExecutor对象,该对象主要用于Android与Flutter间的通信,如生命周期。
this.dartExecutor = new DartExecutor(mFlutterJNI, context.getAssets());
//添加Engine生命周期监听
mFlutterJNI.addEngineLifecycleListener(new EngineLifecycleListenerImpl());
//执行attach方法
attach(this, isBackgroundView);
assertAttached();
private void attach(FlutterNativeView view, boolean isBackgroundView) {
mFlutterJNI.attachToNative(isBackgroundView);
dartExecutor.onAttachedToJNI();
//主要是用于Android与Native间的相互调用
public class FlutterJNI {
@UiThread
public void attachToNative(boolean isBackgroundView) {
nativePlatformViewId = nativeAttach(this, isBackgroundView);
//native方法
private native long nativeAttach(@NonNull FlutterJNI flutterJNI, boolean isBackgroundView);
复制代码
这里重点在于
attach
方法,该方法会通过
FlutterJNI
的
nativeAttach
方法来进行UI、GPU、IO等线程的创建、Dart VM的创建及
Engine
对象的创建等。下面先来看
nativeAttach
方法在
Engine
中的对应实现。
[-> flutter/shell/platform/android/platform_view_android_jni.cc]
static jlong AttachJNI(JNIEnv* env,
jclass clazz,
jobject flutterJNI,
jboolean is_background_view) {
fml::jni::JavaObjectWeakGlobalRef java_object(env, flutterJNI);
//AndroidShellHolder对象的创建
auto shell_holder = std::make_unique<AndroidShellHolder>(
FlutterMain::Get().GetSettings(), java_object, is_background_view);
复制代码
在
AttachJNI
函数中主要是创建一个
AndroidShellHolder
对象,它的构造函数实现如下。
[-> flutter/shell/platform/android/android_shell_holder.cc]
AndroidShellHolder::AndroidShellHolder(
flutter::Settings settings,
fml::jni::JavaObjectWeakGlobalRef java_object,
bool is_background_view)
: settings_(std::move(settings)), java_object_(java_object) {
static size_t shell_count = 1;
auto thread_label = std::to_string(shell_count++);
//创建目标线程
if (is_background_view) {
//仅创建UI线程
thread_host_ = {thread_label, ThreadHost::Type::UI};
} else {
//创建UI线程、GPU线程及IO线程
thread_host_ = {thread_label, ThreadHost::Type::UI | ThreadHost::Type::GPU |
ThreadHost::Type::IO};
// Detach from JNI when the UI and GPU threads exit.
auto jni_exit_task([key = thread_destruct_key_]() {
FML_CHECK(pthread_setspecific(key, reinterpret_cast<void*>(1)) == 0);
thread_host_.ui_thread->GetTaskRunner()->PostTask(jni_exit_task);
if (!is_background_view) {
thread_host_.gpu_thread->GetTaskRunner()->PostTask(jni_exit_task);
fml::WeakPtr<PlatformViewAndroid> weak_platform_view;
Shell::CreateCallback<PlatformView> on_create_platform_view =
[is_background_view, java_object, &weak_platform_view](Shell& shell) {
std::unique_ptr<PlatformViewAndroid> platform_view_android;
//创建PlatformViewAndroid对象
if (is_background_view) {
//不具备渲染能力且在后台运行
platform_view_android = std::make_unique<PlatformViewAndroid>(
shell, // delegate
shell.GetTaskRunners(), // task runners
java_object // java object handle for JNI interop
} else {
//具备渲染能力
platform_view_android = std::make_unique<PlatformViewAndroid>(
shell, // delegate
shell.GetTaskRunners(), // task runners
java_object, // java object handle for JNI interop
shell.GetSettings()
.enable_software_rendering // use software rendering
weak_platform_view = platform_view_android->GetWeakPtr();
return platform_view_android;
Shell::CreateCallback<Rasterizer> on_create_rasterizer = [](Shell& shell) {
//创建删格化器
return std::make_unique<Rasterizer>(shell, shell.GetTaskRunners());
//将当前线程(Android主线程)作为平台线程(platform thread)并确保已经初始化Message Loop
fml::MessageLoop::EnsureInitializedForCurrentThread();
fml::RefPtr<fml::TaskRunner> gpu_runner;
fml::RefPtr<fml::TaskRunner> ui_runner;
fml::RefPtr<fml::TaskRunner> io_runner;
fml::RefPtr<fml::TaskRunner> platform_runner =
fml::MessageLoop::GetCurrent().GetTaskRunner();
if (is_background_view) {
auto single_task_runner = thread_host_.ui_thread->GetTaskRunner();
gpu_runner = single_task_runner;
ui_runner = single_task_runner;
io_runner = single_task_runner;
} else {
gpu_runner = thread_host_.gpu_thread->GetTaskRunner();
ui_runner = thread_host_.ui_thread->GetTaskRunner();
io_runner = thread_host_.io_thread->GetTaskRunner();
//创建TaskRunners对象
flutter::TaskRunners task_runners(thread_label, // label
platform_runner, // platform
gpu_runner, // gpu
ui_runner, // ui
io_runner // io
//创建Shell对象
shell_ =
Shell::Create(task_runners, // task runners
GetDefaultWindowData(), // window data
settings_, // settings
on_create_platform_view, // platform view create callback
on_create_rasterizer // rasterizer create callback
platform_view_ = weak_platform_view;
FML_DCHECK(platform_view_);
is_valid_ = shell_ != nullptr;
if (is_valid_) {
//降低GPU线程的优先级
task_runners.GetGPUTaskRunner()->PostTask([]() {
//Android将-8描述为“最重要的显示线程,用于合成屏幕和检索输入事件”。 保守地将GPU线程设置为比其优先级稍低的优先级。
//将GPU线程优先级设为-5。
if (::setpriority(PRIO_PROCESS, gettid(), -5) != 0) {
//如果无法将GPU线程优先级设为-5,那么继续将GPU线程优先级设为-2。
if (::setpriority(PRIO_PROCESS, gettid(), -2) != 0) {
FML_LOG(ERROR) << "Failed to set GPU task runner priority";
//将UI线程优先级设为-1。
task_runners.GetUITaskRunner()->PostTask([]() {
if (::setpriority(PRIO_PROCESS, gettid(), -1) != 0) {
FML_LOG(ERROR) << "Failed to set UI task runner priority";
复制代码
上面代码还是比较多的,但主要做了以下几件事。
is_background_view
为true,则仅会创建UI线程,否则会创建UI、GPU及IO线程。
is_background_view
默认为false。
Shell
对象的创建。
从上面可以得出Android主线程(UI线程)是作为
Flutter
的平台线程(platform thread)存在的,与
Flutter
的UI线程不是同一线程,所以不要将Android的主线程(UI线程)与
Flutter
的UI线程搞混。
再来看
Shell
对象的创建。
[-> flutter/shell/common/shell.cc]
std::unique_ptr<Shell> Shell::Create(
TaskRunners task_runners,
const WindowData window_data,
Settings settings,
Shell::CreateCallback<PlatformView> on_create_platform_view,
Shell::CreateCallback<Rasterizer> on_create_rasterizer) {
PerformInitializationTasks(settings);
PersistentCache::SetCacheSkSL(settings.cache_sksl);
//Dart虚拟机的创建
auto vm = DartVMRef::Create(settings);
auto vm_data = vm->GetVMData();
return Shell::Create(std::move(task_runners), //
std::move(window_data), //
std::move(settings), //
vm_data->GetIsolateSnapshot(), // isolate snapshot
on_create_platform_view, //
on_create_rasterizer, //
std::move(vm) //
复制代码
在
Create
函数中,会进行Dart VM的创建,其创建流程参考
Flutter之Dart虚拟机启动
[-> flutter/shell/common/shell.cc]
std::unique_ptr<Shell> Shell::Create(
TaskRunners task_runners,
const WindowData window_data,
Settings settings,
fml::RefPtr<const DartSnapshot> isolate_snapshot,
const Shell::CreateCallback<PlatformView>& on_create_platform_view,
const Shell::CreateCallback<Rasterizer>& on_create_rasterizer,
DartVMRef vm) {
fml::AutoResetWaitableEvent latch;
std::unique_ptr<Shell> shell;
fml::TaskRunner::RunNowOrPostTask(
task_runners.GetPlatformTaskRunner(),
fml::MakeCopyable([&latch, //
vm = std::move(vm), //
&shell, //
task_runners = std::move(task_runners), //
window_data, //
settings, //
isolate_snapshot = std::move(isolate_snapshot), //
on_create_platform_view, //
on_create_rasterizer //
]() mutable {
//在平台线程中创建Shell对象
shell = CreateShellOnPlatformThread(std::move(vm),
std::move(task_runners), //
window_data, //
settings, //
std::move(isolate_snapshot), //
on_create_platform_view, //
on_create_rasterizer //
//锁唤醒
latch.Signal();
//锁等待
latch.Wait();
return shell;
std::unique_ptr<Shell> Shell::CreateShellOnPlatformThread(
DartVMRef vm,
TaskRunners task_runners,
const WindowData window_data,
Settings settings,
fml::RefPtr<const DartSnapshot> isolate_snapshot,
const Shell::CreateCallback<PlatformView>& on_create_platform_view,
const Shell::CreateCallback<Rasterizer>& on_create_rasterizer) {
//创建Shell对象
auto shell =
std::unique_ptr<Shell>(new Shell(std::move(vm), task_runners, settings));
//在GPU线程上创建光栅化器。
std::promise<std::unique_ptr<Rasterizer>> rasterizer_promise;
auto rasterizer_future = rasterizer_promise.get_future();
std::promise<fml::WeakPtr<SnapshotDelegate>> snapshot_delegate_promise;
auto snapshot_delegate_future = snapshot_delegate_promise.get_future();
fml::TaskRunner::RunNowOrPostTask(
task_runners.GetGPUTaskRunner(), [&rasterizer_promise, //
&snapshot_delegate_promise,
on_create_rasterizer, //
shell = shell.get() //
]() {
std::unique_ptr<Rasterizer> rasterizer(on_create_rasterizer(*shell));
snapshot_delegate_promise.set_value(rasterizer->GetSnapshotDelegate());
rasterizer_promise.set_value(std::move(rasterizer));
//在平台线程(platform thread)也就是Android主线程中创建platform view
auto platform_view = on_create_platform_view(*shell.get());
if (!platform_view || !platform_view->GetWeakPtr()) {
return nullptr;
//由platform view创建vsync waiter,
auto vsync_waiter = platform_view->CreateVSyncWaiter();
if (!vsync_waiter) {
return nullptr;
//在IO线程上创建IO manager。 必须先初始化IO manager,因为它具有其他子系统依赖的状态。 必须首先引导它,并获取必要的引用以初始化其他子系统。
std::promise<std::unique_ptr<ShellIOManager>> io_manager_promise;
auto io_manager_future = io_manager_promise.get_future();
std::promise<fml::WeakPtr<ShellIOManager>> weak_io_manager_promise;
auto weak_io_manager_future = weak_io_manager_promise.get_future();
std::promise<fml::RefPtr<SkiaUnrefQueue>> unref_queue_promise;
auto unref_queue_future = unref_queue_promise.get_future();
auto io_task_runner = shell->GetTaskRunners().GetIOTaskRunner();
// TODO(gw280): The WeakPtr here asserts that we are derefing it on the
// same thread as it was created on. We are currently on the IO thread
// inside this lambda but we need to deref the PlatformView, which was
// constructed on the platform thread.
// https://github.com/flutter/flutter/issues/42948
fml::TaskRunner::RunNowOrPostTask(
io_task_runner,
[&io_manager_promise, //
&weak_io_manager_promise, //
&unref_queue_promise, //
platform_view = platform_view->GetWeakPtr(), //
io_task_runner, //
is_backgrounded_sync_switch = shell->GetIsGpuDisabledSyncSwitch() //
]() {
auto io_manager = std::make_unique<ShellIOManager>(
platform_view.getUnsafe()->CreateResourceContext(),
is_backgrounded_sync_switch, io_task_runner);
weak_io_manager_promise.set_value(io_manager->GetWeakPtr());
unref_queue_promise.set_value(io_manager->GetSkiaUnrefQueue());
io_manager_promise.set_value(std::move(io_manager));
// Send dispatcher_maker to the engine constructor because shell won't have
// platform_view set until Shell::Setup is called later.
auto dispatcher_maker = platform_view->GetDispatcherMaker();
//在Flutter的UI线程中创建engine对象
std::promise<std::unique_ptr<Engine>> engine_promise;
auto engine_future = engine_promise.get_future();
fml::TaskRunner::RunNowOrPostTask(
shell->GetTaskRunners().GetUITaskRunner(),
fml::MakeCopyable([&engine_promise, //
shell = shell.get(), //
&dispatcher_maker, //
&window_data, //
isolate_snapshot = std::move(isolate_snapshot), //
vsync_waiter = std::move(vsync_waiter), //
&weak_io_manager_future, //
&snapshot_delegate_future, //
&unref_queue_future //
]() mutable {
const auto& task_runners = shell->GetTaskRunners();
//在UI线程创建animator,这里主要是为了将平台的vsync信号同步给animator
auto animator = std::make_unique<Animator>(*shell, task_runners,
std::move(vsync_waiter));
//Engine对象的创建,此时已经切换到Flutter的UI线程
engine_promise.set_value(std::make_unique<Engine>(
*shell, //
dispatcher_maker, //
*shell->GetDartVM(), //
std::move(isolate_snapshot), //
task_runners, //
window_data, //
shell->GetSettings(), //
std::move(animator), //
weak_io_manager_future.get(), //
unref_queue_future.get(), //
snapshot_delegate_future.get() //
//启动Shell
if (!shell->Setup(std::move(platform_view), //
engine_future.get(), //
rasterizer_future.get(), //
io_manager_future.get()) //
return nullptr;
return shell;
复制代码
CreateShellOnPlatformThread
函数的实现还是蛮复杂的,但主要还是做了以下几件事。
Shell
对象。
Flutter
在绘制完成后,会将数据给它进行删格化处理。关于
Flutter
的绘制原理可以参考
Flutter的绘制流程简述
这篇文章。
PlatformViewAndroid
对象。如果
is_background_view
为true,会创建一个具备渲染能力的
PlatformViewAndroid
对象,否则创建的是一个不具备渲染能力且在后台执行的
PlatformViewAndroid
对象。
PlatformView
来创建vsync waiter,主要用于VSYNC信号的同步。
Shell
,调用
Shell
对象的
Setup
函数。
这里先忽略其他,主要来看
Engine
对象的创建。在其构造函数中,会创建一个
RuntimeController
对象。
Engine::Engine(Delegate& delegate,
const PointerDataDispatcherMaker& dispatcher_maker,
DartVM& vm,
fml::RefPtr<const DartSnapshot> isolate_snapshot,
TaskRunners task_runners,
const WindowData window_data,
Settings settings,
std::unique_ptr<Animator> animator,
fml::WeakPtr<IOManager> io_manager,
fml::RefPtr<SkiaUnrefQueue> unref_queue,
fml::WeakPtr<SnapshotDelegate> snapshot_delegate)
: delegate_(delegate),
settings_(std::move(settings)),
animator_(std::move(animator)),
activity_running_(true),
have_surface_(false),
image_decoder_(task_runners,
vm.GetConcurrentWorkerTaskRunner(),
io_manager),
task_runners_(std::move(task_runners)),
weak_factory_(this) {
//RuntimeController对象的创建
runtime_controller_ = std::make_unique<RuntimeController>(
*this, // runtime delegate
&vm, // VM
std::move(isolate_snapshot), // isolate snapshot
task_runners_, // task runners
std::move(snapshot_delegate),
std::move(io_manager), // io manager
std::move(unref_queue), // Skia unref queue
image_decoder_.GetWeakPtr(), // image decoder
settings_.advisory_script_uri, // advisory script uri
settings_.advisory_script_entrypoint, // advisory script entrypoint
settings_.idle_notification_callback, // idle notification callback
window_data, // window data
settings_.isolate_create_callback, // isolate create callback
settings_.isolate_shutdown_callback, // isolate shutdown callback
settings_.persistent_isolate_data // persistent isolate data
pointer_data_dispatcher_ = dispatcher_maker(*this);
复制代码
这里的
RuntimeController
是一个非常重要的对象,在后面很多地方都会用到它。由于篇幅原因,先来看一下从
FlutterActivity
到
RuntimeController
对象创建的流程图。
2.1、RootIsolate对象的创建
再来看
RuntimeController
对象的创建。
RuntimeController::RuntimeController(
RuntimeDelegate& p_client,
DartVM* p_vm,
fml::RefPtr<const DartSnapshot> p_isolate_snapshot,
TaskRunners p_task_runners,
fml::WeakPtr<SnapshotDelegate> p_snapshot_delegate,
fml::WeakPtr<IOManager> p_io_manager,
fml::RefPtr<SkiaUnrefQueue> p_unref_queue,
fml::WeakPtr<ImageDecoder> p_image_decoder,
std::string p_advisory_script_uri,
std::string p_advisory_script_entrypoint,
const std::function<void(int64_t)>& idle_notification_callback,
const WindowData& p_window_data,
const fml::closure& p_isolate_create_callback,
const fml::closure& p_isolate_shutdown_callback,
std::shared_ptr<const fml::Mapping> p_persistent_isolate_data)
: client_(p_client),
vm_(p_vm),
isolate_snapshot_(std::move(p_isolate_snapshot)),
task_runners_(p_task_runners),
snapshot_delegate_(p_snapshot_delegate),
io_manager_(p_io_manager),
unref_queue_(p_unref_queue),
image_decoder_(p_image_decoder),
advisory_script_uri_(p_advisory_script_uri),
advisory_script_entrypoint_(p_advisory_script_entrypoint),
idle_notification_callback_(idle_notification_callback),
window_data_(std::move(p_window_data)),
isolate_create_callback_(p_isolate_create_callback),
isolate_shutdown_callback_(p_isolate_shutdown_callback),
persistent_isolate_data_(std::move(p_persistent_isolate_data)) {
//创建RootIsolate
auto strong_root_isolate =
DartIsolate::CreateRootIsolate(vm_->GetVMData()->GetSettings(), //
isolate_snapshot_, //
task_runners_, //
std::make_unique<Window>(this), //
snapshot_delegate_, //
io_manager_, //
unref_queue_, //
image_decoder_, //
p_advisory_script_uri, //
p_advisory_script_entrypoint, //
nullptr, //
isolate_create_callback_, //
isolate_shutdown_callback_ //
.lock();
复制代码
在构造函数中,会调用
CreateRootIsolate
函数来创建一个
isolate
作为根
Isolate
。
std::weak_ptr<DartIsolate> DartIsolate::CreateRootIsolate(
const Settings& settings,
fml::RefPtr<const DartSnapshot> isolate_snapshot,
TaskRunners task_runners,
std::unique_ptr<Window> window,
fml::WeakPtr<SnapshotDelegate> snapshot_delegate,
fml::WeakPtr<IOManager> io_manager,
fml::RefPtr<SkiaUnrefQueue> unref_queue,
fml::WeakPtr<ImageDecoder> image_decoder,
std::string advisory_script_uri,
std::string advisory_script_entrypoint,
Dart_IsolateFlags* flags,
const fml::closure& isolate_create_callback,
const fml::closure& isolate_shutdown_callback) {
//创建isolate对象
Dart_Isolate vm_isolate =
CreateDartIsolateGroup(std::move(isolate_group_data),
std::move(isolate_data), flags, error.error());
std::shared_ptr<DartIsolate>* root_isolate_data =
static_cast<std::shared_ptr<DartIsolate>*>(Dart_IsolateData(vm_isolate));
(*root_isolate_data)->SetWindow(std::move(window));
return (*root_isolate_data)->GetWeakIsolatePtr();
复制代码
再来看
CreateDartIsolateGroup
函数,该函数主要做了两件事。
Dart_Isolate DartIsolate::CreateDartIsolateGroup(
std::unique_ptr<std::shared_ptr<DartIsolateGroupData>> isolate_group_data,
std::unique_ptr<std::shared_ptr<DartIsolate>> isolate_data,
Dart_IsolateFlags* flags,
char** error) {
//通过Dart VM创建一个isolate对象
Dart_Isolate isolate = Dart_CreateIsolateGroup(
(*isolate_group_data)->GetAdvisoryScriptURI().c_str(),
(*isolate_group_data)->GetAdvisoryScriptEntrypoint().c_str(),
(*isolate_group_data)->GetIsolateSnapshot()->GetDataMapping(),
(*isolate_group_data)->GetIsolateSnapshot()->GetInstructionsMapping(),
flags, isolate_group_data.get(), isolate_data.get(), error);
if (isolate == nullptr) {
return nullptr;
// Ownership of the isolate data objects has been transferred to the Dart VM.
std::shared_ptr<DartIsolate> embedder_isolate(*isolate_data);
isolate_group_data.release();
isolate_data.release();
//初始化isolate对象
if (!InitializeIsolate(std::move(embedder_isolate), isolate, error)) {
return nullptr;
return isolate;
复制代码
先来看
Dart_CreateIsolateGroup
函数在Dart VM的实现,在其实现函数中会创建
isolate
对象。
Dart_CreateIsolateGroup(const char* script_uri,
const char* name,
const uint8_t* snapshot_data,
const uint8_t* snapshot_instructions,
Dart_IsolateFlags* flags,
void* isolate_group_data,
void* isolate_data,
char** error) {
Dart_IsolateFlags api_flags;
if (flags == nullptr) {
Isolate::FlagsInitialize(&api_flags);
flags = &api_flags;
const char* non_null_name = name == nullptr ? "isolate" : name;
std::unique_ptr<IsolateGroupSource> source(
new IsolateGroupSource(script_uri, non_null_name, snapshot_data,
snapshot_instructions, nullptr, -1, *flags));
auto group = new IsolateGroup(std::move(source), isolate_group_data);
IsolateGroup::RegisterIsolateGroup(group);
Dart_Isolate isolate =
CreateIsolate(group, non_null_name, isolate_data, error);
if (isolate != nullptr) {
group->set_initial_spawn_successful();
return isolate;
复制代码
CreateIsolate
函数就会创建一个
isolate
对象,关于后续的
isolate
对象的创建及
isolate
的更多内容可以去阅读
深入理解Isolate
这篇文章。
再来看
isolate
对象的初始化函数——
InitializeIsolate
的实现。
bool DartIsolate::InitializeIsolate(
std::shared_ptr<DartIsolate> embedder_isolate,
Dart_Isolate isolate,
char** error) {
if (!embedder_isolate->Initialize(isolate)) {//初始化
*error = fml::strdup("Embedder could not initialize the Dart isolate.");
9999 return false;
//isolate加载library
if (!embedder_isolate->LoadLibraries()) {
*error = fml::strdup(
"Embedder could not load libraries in the new Dart isolate.");
return false;
// Root isolates will be setup by the engine and the service isolate (which is
// also a root isolate) by the utility routines in the VM. However, secondary
// isolates will be run by the VM if they are marked as runnable.
if (!embedder_isolate->IsRootIsolate()) {
auto child_isolate_preparer =
embedder_isolate->GetIsolateGroupData().GetChildIsolatePreparer();
if (!child_isolate_preparer(embedder_isolate.get())) {
*error = fml::strdup("Could not prepare the child isolate to run.");
return false;
return true;
//初始化
bool DartIsolate::Initialize(Dart_Isolate dart_isolate) {
if (phase_ != Phase::Uninitialized) {
return false;
if (dart_isolate == nullptr) {
return false;
if (Dart_CurrentIsolate() != dart_isolate) {
return false;
//从这里开始,可以安全的使用isolate
SetIsolate(dart_isolate);
// We are entering a new scope (for the first time since initialization) and
// we want to restore the current scope to null when we exit out of this
// method. This balances the implicit Dart_EnterIsolate call made by
// Dart_CreateIsolateGroup (which calls the Initialize).
Dart_ExitIsolate();
tonic::DartIsolateScope scope(isolate());
//设置UI线程的消息处理器
SetMessageHandlingTaskRunner(GetTaskRunners().GetUITaskRunner());
if (tonic::LogIfError(
Dart_SetLibraryTagHandler(tonic::DartState::HandleLibraryTag))) {
return false;
if (!UpdateThreadPoolNames()) {
return false;
//初始化完成
phase_ = Phase::Initialized;
return true;
void DartIsolate::SetMessageHandlingTaskRunner(
fml::RefPtr<fml::TaskRunner> runner) {
if (!IsRootIsolate() || !runner) {
return;
message_handling_task_runner_ = runner;
//设置消息处理器
message_handler().Initialize(
[runner](std::function<void()> task) { runner->PostTask(task); });
复制代码
最终在
SetMessageHandlingTaskRunner
函数中将
UITaskRunner
设置为
Flutter
中UI线程的消息处理器,进行UI线程中消息的分发并处理。也就是说在
RootIsolate
中,消息并不是通过线程池中来分发及处理的,所以不要在UI线程的消息中进行耗时操作,否则影响UI绘制。其实在Android平台上的
Flutter
的消息处理机制与
Android
中的消息机制类似,都是使用的Android平台的
Looper
。更多内容后面再来一一讲解。
void DartMessageHandler::Initialize(TaskDispatcher dispatcher) {
// Only can be called once.
TONIC_CHECK(!task_dispatcher_ && dispatcher);
task_dispatcher_ = dispatcher;
Dart_SetMessageNotifyCallback(MessageNotifyCallback);
复制代码
在
Dart_SetMessageNotifyCallback
中其实就是给
RootIsolate
设置消息通知回调,代码如下。
DART_EXPORT void Dart_SetMessageNotifyCallback(
Dart_MessageNotifyCallback message_notify_callback) {
Isolate* isolate = Isolate::Current();
CHECK_ISOLATE(isolate);
NoSafepointScope no_safepoint_scope;
isolate->set_message_notify_callback(message_notify_callback);
if (message_notify_callback != nullptr && isolate->HasPendingMessages()) {
::Dart_ExitIsolate();
// If a new handler gets installed and there are pending messages in the
// queue (e.g. OOB messages for doing vm service work) we need to notify
// the newly registered callback, otherwise the embedder might never get
// notified about the pending messages.
message_notify_callback(Api::CastIsolate(isolate));
::Dart_EnterIsolate(Api::CastIsolate(isolate));
复制代码
关于
RootIsolate
的相关调用流程图如下。
到此,一个
Engine
对象就已经创建完毕。再回到
Shell
中,来看
Shell
的
Setup
函数是如何启动的。代码如下。
bool Shell::Setup(std::unique_ptr<PlatformView> platform_view,
std::unique_ptr<Engine> engine,
std::unique_ptr<Rasterizer> rasterizer,
std::unique_ptr<ShellIOManager> io_manager) {
if (is_setup_) {
return false;
//platform_view、engine、rasterizer及io_manager只要有一个创建失败,Shell启动就会失败
if (!platform_view || !engine || !rasterizer || !io_manager) {
return false;
platform_view_ = std::move(platform_view);
engine_ = std::move(engine);
rasterizer_ = std::move(rasterizer);
io_manager_ = std::move(io_manager);
// The weak ptr must be generated in the platform thread which owns the unique
// ptr.
weak_engine_ = engine_->GetWeakPtr();
weak_rasterizer_ = rasterizer_->GetWeakPtr();
weak_platform_view_ = platform_view_->GetWeakPtr();
is_setup_ = true;
vm_->GetServiceProtocol()->AddHandler(this, GetServiceProtocolDescription());
PersistentCache::GetCacheForProcess()->AddWorkerTaskRunner(
task_runners_.GetIOTaskRunner());
PersistentCache::GetCacheForProcess()->SetIsDumpingSkp(
settings_.dump_skp_on_shader_compilation);
// TODO(gw280): The WeakPtr here asserts that we are derefing it on the
// same thread as it was created on. Shell is constructed on the platform
// thread but we need to call into the Engine on the UI thread, so we need
// to use getUnsafe() here to avoid failing the assertion.
// https://github.com/flutter/flutter/issues/42947
display_refresh_rate_ = weak_engine_.getUnsafe()->GetDisplayRefreshRate();
return true;
复制代码
在
Setup
函数中主要是检查
Shell
的子组件是否已经初始化,如
Engine
、
platform_view
、
rasterizer
、
io manager
等,然后将这些组件设置为全局。
如果该函数返回
true
就表示
Engine
已经创建成功。
3、Engine的运行
再回到类
FlutterActivityDelegate
中,当
Engine
创建完毕后,再调用
runBundle
方法来执行
Flutter
代码。
public final class FlutterActivityDelegate
implements FlutterActivityEvents,
FlutterView.Provider,
PluginRegistry {
private void runBundle(String appBundlePath) {
if (!flutterView.getFlutterNativeView().isApplicationRunning()) {
FlutterRunArguments args = new FlutterRunArguments();
//flutter代码路径
args.bundlePath = appBundlePath;
//flutter入口函数
args.entrypoint = "main";
flutterView.runFromBundle(args);
复制代码
先来看
FlutterRunArguments
,它仅有三个字段,如下。
public class FlutterRunArguments {
public String bundlePath;
public String entrypoint;
public String libraryPath;
复制代码
在
runBundle
方法中调用
FlutterView
的
runFromBundle
方法时,字段
libraryPath
为空。在后面会用到根据
entrypoint
及
libraryPath
有不同实现。
public class FlutterView extends SurfaceView implements BinaryMessenger, TextureRegistry {
public void runFromBundle(FlutterRunArguments args) {
assertAttached();
preRun();
//运行flutter代码
mNativeView.runFromBundle(args);
postRun();
public class FlutterNativeView implements BinaryMessenger {
public void runFromBundle(FlutterRunArguments args) {
if (args.entrypoint == null) {
throw new AssertionError("An entrypoint must be specified");
assertAttached();
if (applicationIsRunning)
throw new AssertionError(
"This Flutter engine instance is already running an application");
mFlutterJNI.runBundleAndSnapshotFromLibrary(
args.bundlePath,
args.entrypoint,
args.libraryPath,
mContext.getResources().getAssets()
applicationIsRunning = true;
public class FlutterJNI {
@UiThread
public void runBundleAndSnapshotFromLibrary(
@NonNull String bundlePath,
@Nullable String entrypointFunctionName,
@Nullable String pathToEntrypointFunction,
@NonNull AssetManager assetManager
ensureRunningOnMainThread();
ensureAttachedToNative();
nativeRunBundleAndSnapshotFromLibrary(
nativePlatformViewId,
bundlePath,
entrypointFunctionName,
pathToEntrypointFunction,
assetManager
private native void nativeRunBundleAndSnapshotFromLibrary(
long nativePlatformViewId,
@NonNull String bundlePath,
@Nullable String entrypointFunctionName,
@Nullable String pathToEntrypointFunction,
@NonNull AssetManager manager
复制代码
nativeRunBundleAndSnapshotFromLibrary
又是一个
native
方法,它在
Engine
中对应的函数实现如下。
static void RunBundleAndSnapshotFromLibrary(JNIEnv* env,
jobject jcaller,
jlong shell_holder,
jstring jBundlePath,
jstring jEntrypoint,
jstring jLibraryUrl,
jobject jAssetManager) {
//根据配置文件来启动Engine
ANDROID_SHELL_HOLDER->Launch(std::move(config));
复制代码
RunBundleAndSnapshotFromLibrary
主要是对传递的参数进行封装,然后调用
Shell
的
Launch
函数来运行
Engine
。
void AndroidShellHolder::Launch(RunConfiguration config) {
if (!IsValid()) {
return;
//根据配置运行Engine
shell_->RunEngine(std::move(config));
复制代码
RunEngine
函数的代码实现如下。
void Shell::RunEngine(RunConfiguration run_configuration) {
RunEngine(std::move(run_configuration), nullptr);
void Shell::RunEngine(
RunConfiguration run_configuration,
const std::function<void(Engine::RunStatus)>& result_callback) {
auto result = [platform_runner = task_runners_.GetPlatformTaskRunner(), result_callback](Engine::RunStatus run_result) {
if (!result_callback) {
return;
platform_runner->PostTask(
[result_callback, run_result]() { result_callback(run_result); });
//在Flutter的UI线程调用Engine对象的run函数
fml::TaskRunner::RunNowOrPostTask(
task_runners_.GetUITaskRunner(),
fml::MakeCopyable(
[run_configuration = std::move(run_configuration),
weak_engine = weak_engine_, result]() mutable {
if (!weak_engine) {
result(Engine::RunStatus::Failure);
return;
//weak_engine是在执行shell的Setup函数时设置的。
auto run_result = weak_engine->Run(std::move(run_configuration));
if (run_result == flutter::Engine::RunStatus::Failure) {
FML_LOG(ERROR) << "Could not launch engine with configuration.";
result(run_result);
复制代码
通过执行
Engine
对象的
Run
函数,就可以让
Engine
对象跑起来,实现代码如下。
Engine::RunStatus Engine::Run(RunConfiguration configuration) {
if (!configuration.IsValid()) {
return RunStatus::Failure;
last_entry_point_ = configuration.GetEntrypoint();
last_entry_point_library_ = configuration.GetEntrypointLibrary();
//准备并启动Isolate
auto isolate_launch_status =
PrepareAndLaunchIsolate(std::move(configuration));
return isolate_running ? Engine::RunStatus::Success
: Engine::RunStatus::Failure;
复制代码
下面再来看
PrepareAndLaunchIsolate
函数的实现。
Engine::RunStatus Engine::PrepareAndLaunchIsolate(
RunConfiguration configuration) {
//默认情况下,configuration.GetEntrypointLibrary()为空
if (configuration.GetEntrypointLibrary().empty()) {
//运行isolate
if (!isolate->Run(configuration.GetEntrypoint(),
settings_.dart_entrypoint_args)) {
FML_LOG(ERROR) << "Could not run the isolate.";
return RunStatus::Failure;
} else {
if (!isolate->RunFromLibrary(configuration.GetEntrypointLibrary(),
configuration.GetEntrypoint(),
settings_.dart_entrypoint_args)) {
FML_LOG(ERROR) << "Could not run the isolate.";
return RunStatus::Failure;
return RunStatus::Success;
复制代码
默认情况下,
configuration.GetEntrypointLibrary()
返回值为空,所以这里会调用
DartIsolate
的
run
函数来运行
isolate
。
bool DartIsolate::Run(const std::string& entrypoint_name,
const std::vector<std::string>& args,
const fml::closure& on_run) {
if (phase_ != Phase::Ready) {
return false;
tonic::DartState::Scope scope(this);
auto user_entrypoint_function =
Dart_GetField(Dart_RootLibrary(), tonic::ToDart(entrypoint_name.c_str()));
auto entrypoint_args = tonic::ToDart(args);
//调用main方法
if (!InvokeMainEntrypoint(user_entrypoint_function, entrypoint_args)) {
return false;
phase_ = Phase::Running;
if (on_run) {
on_run();
return true;
复制代码
InvokeMainEntrypoint
顾名思义就是调用
Flutter
项目中的入口函数——
main
方法。
static bool InvokeMainEntrypoint(Dart_Handle user_entrypoint_function,
Dart_Handle args) {
if (tonic::LogIfError(user_entrypoint_function)) {
FML_LOG(ERROR) << "Could not resolve main entrypoint function.";
return false;
Dart_Handle start_main_isolate_function =
tonic::DartInvokeField(Dart_LookupLibrary(tonic::ToDart("dart:isolate")),
"_getStartMainIsolateFunction", {});
if (tonic::LogIfError(start_main_isolate_function)) {
FML_LOG(ERROR) << "Could not resolve main entrypoint trampoline.";
return false;
if (tonic::LogIfError(tonic::DartInvokeField(
Dart_LookupLibrary(tonic::ToDart("dart:ui")), "_runMainZoned",
{start_main_isolate_function, user_entrypoint_function, args}))) {
FML_LOG(ERROR) << "Could not invoke the main entrypoint.";
return false;
return true;
复制代码
来看
_getStartMainIsolateFunction
函数的实现,它返回了一个
_startMainIsolate
函数。
@pragma("vm:entry-point", "call")
Function _getStartMainIsolateFunction() {
return _startMainIsolate;
@pragma("vm:entry-point", "call")
void _startMainIsolate(Function entryPoint, List<String> args) {
_startIsolate(
null, // no parent port
entryPoint,
args,
null, // no message
true, // isSpawnUri
null, // no control port
null); // no capabilities
复制代码
再来看
_runMainZoned
函数的实现,它就直接执行
_getStartMainIsolateFunction
函数的返回函数
_startMainIsolate
。
@pragma('vm:entry-point')
// ignore: unused_element
void _runMainZoned(Function startMainIsolateFunction,
Function userMainFunction,
List<String> args) {
startMainIsolateFunction((){
runZoned<void>(() {
if (userMainFunction is _BinaryFunction) {
// This seems to be undocumented but supported by the command line VM.
// Let's do the same in case old entry-points are ported to Flutter.
(userMainFunction as dynamic)(args, '');
} else if (userMainFunction is _UnaryFunction) {
(userMainFunction as dynamic)(args);
} else {
userMainFunction();
}, onError: (Object error, StackTrace stackTrace) {
_reportUnhandledException(error.toString(), stackTrace.toString());
}, null);
复制代码
在
_startMainIsolate
函数中就是直接运行
RootIsolate
并执行入口函数。
@pragma("vm:entry-point", "call")
void _startIsolate(
SendPort parentPort,
Function entryPoint,
List<String> args,
var message,
bool isSpawnUri,
RawReceivePort controlPort,
List capabilities) {
//将所有用户代码处理延迟到消息循环的下一次运行。 这使我们能够拦截事件分发中的某些条件,例如从暂停状态开始。
RawReceivePort port = new RawReceivePort();
port.handler = (_) {
port.close();
if (isSpawnUri) {
if (entryPoint is _BinaryFunction) {
(entryPoint as dynamic)(args, message);
} else if (entryPoint is _UnaryFunction) {
(entryPoint as dynamic)(args);
} else {
entryPoint();
} else {
entryPoint(message);
//确保消息处理程序已触发。
port.sendPort.send(null);
复制代码
在
_startIsolate
方法中,就会执行
Flutter
中的入口函数,如下。
void main() => runApp(MyApp());
复制代码
运行
Flutter
代码的流程图如下。
由于东西比较多,所以本文只是描述了
Engine
的整体创建流程,一些细节也没有具体讲述。但如果熟悉了
Engine
的创建流程,那么也就能很快的去了解细节的具体实现。
【参考资料】